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Abstract
The scalability of multi-agent reinforcement learning methods to a large number of population is
drawing more and more attention in both practice and theory. We consider the basic yet important
model, i.e., linear quadratic regulator (LQR), in a mean-field approximation scheme against the curse
of the action space dimensionality and the exponential growth of agent interactions. Several methods
proposed in mean-field setting require a centralized controller, which is unrealistic in practice. In
this paper, we present the first decentralized policy gradient method (MF-DPGM) for mean-field
multi-agent reinforcement learning, where a large team of exchangeable agents communicate via a
connected network. After a linear transformation of states and policies, we update the new local and
mean-field policies by a decentralized gradient primal-dual algorithm respectively in a decoupling
way, in order to achieve a global policy consensus. We also give a rigorous proof of the global
convergence rate of MF-DPGM by studying the geometry of the problem and estimating one-step
progress under decentralized scheme. In addition, extensive experiments are conducted to support
our theoretical findings.

Keywords: Multi-Agent Reinforcement Learning, Decentralized Learning, Mean-Field Approxi-
mation, Global Convergence

1. Introduction

Recent years have witnessed a promising resurgence of multi-agent reinforcement learning (MARL)
in data-driven and large population environments. Motivating applications span over multi-robotics
systems (Corke et al., 2005), autonomous driving (Lo, 2012; Shalev-Shwartz et al., 2016), and
sensor networks (Rabbat and Nowak, 2004; Cortes et al., 2004). MARL involves a set of agents
learning to make decisions that minimize their accumulative cost by iterative interactions with
a shared environment (Shoham et al., 2003, 2007; Bu et al., 2008). As a result, a fundamental
difficulty in MARL is that changes in the policy of one agent will affect that of the others, and
vice versa (Matignon et al., 2012). What is worse, large modern multi-agent systems result in an
exponential growth of the capacity of the joint action space with the number of agents. Hence
the classical MARL methods (Bowling and Veloso, 2002; Lipsa and Martins, 2011; Lessard and
Lall, 2015) via either equilibrium-solving or few controllers stagger in large-scale applications.
Additionally, although a central controller receiving costs and determining actions reduces MARL to
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a classical MDP which can be solved by existing single-agent RL approaches, the central controller
is usually costly to install and the communication overhead degrades the scalability and robustness.
Motivation of mean-field settings. In this paper, we consider homogeneous large-scale MARL
systems with symmetry, where each agent has the same reward function and state transition rule. To
address the complicated correlations in multi-agent systems, Foerster et al. (2018) and Panait and
Luke (2005) consider accounting for the extra information from conjecturing the policies of other
agents, while Lee et al. (2018) and Zhang et al. (2018a) study the decentralized actor-critic algorithm.
On the other hand, the mean field approximation (Lasry and Lions, 2007; Huang et al., 2006) serves
as an effective alternative to modelling strategic interactions for large populations with symmetry. To
characterize the mean-field effect in finite-agent systems, Arabneydi and Mahajan (2016) shows that
any exchangeable system, where exchanging any two agents does not affect the dynamics or costs, is
equivalent to one where the dynamics and costs are coupled across agents through the mean field
(empirical mean state). More importantly, compared to other formulations, the mean-field setting
greatly alleviates the curse of action space dimensionality by a symmetric global optimal policy and
a cost function for all agents while decoupling complex correlations in large interactive systems.

However, neither decentralized algorithms nor accompanied guarantees are studied for the well-
behaved mean-field setting. To fill this void, we study the decentralized exchangeable multi-agent
systems in the collaborative setting where each agent seeks the optimal policy that minimizes the
accumulative global cost over all the agents, via neighborhood communications by a connected
network. We propose the first decentralized policy learning scheme with smaller exploration space,
less communication, and more robustness. Moreover, we study the non-convex problem geometry by
several almost continuity results, which are combined with one-step iterate progress to establish a
sublinear global convergence rate for the simple yet fundamental setting LQR. Our contributions are
concluded as follows: (1) We formulate the policy gradients for MARL under the mean-field setting.
(2) We proposed the first decentralized algorithm (MF-DPGM) to effectively learn the optimal policy
for mean-field MARL. (3) We present a novel global convergence guarantee for MF-DPGM under
mild assumptions and simulation results to justiify the performance of our algorithm.

Related Work. There has been a line of work on solving normal MARL problems. Based on
the seminal work for the framework of Markov games Littman (1994), follow-up works, such
as Lauer and Riedmiller (2000); Littman (2001); Hu and Wellman (2003), studied both collaborative
and competitive relationships among agents. Recently, MARL with a large population Sandholm
(2010); Lo (2012) becomes increasingly popular, such as urban transportation Shalev-Shwartz
et al. (2016); Lo (2012), social dilemmas Leibo et al. (2017); Hughes et al. (2018), multi-robotics
systems Corke et al. (2005), and power grids Callaway and Hiskens (2010), wherein the curse of
dimensionality for learning and control Matignon et al. (2012) arises. Our work is in the line of
collaborative settings, where a central controller can help solve MARL by existing single-agent
algorithms Bradtke et al. (1994); Tu and Recht (2017); Malik et al. (2018). Nonetheless, due to
high cost to set central controllers in large-scale applications Kulkarni and Venayagamoorthy (2010),
a series of decentralized methods Wai et al. (2018); Zhang et al. (2018a); Lee et al. (2018) are
developed following Zhang et al. (2018b) to learn optimal policies with local rewards and actions.

Mean-field approximation of the system stems from Stanley (1971), which is generalized to
multi-agent scenarios by Huang et al. (2003); Lasry and Lions (2006, 2007); Huang et al. (2006). Our
setting is also closely related to mean-filed control for exchangeable agents Madjidian and Mirkin
(2014); Arabneydi and Mahajan (2016) but from a model-free reinforcement learning perspective.
Although another independent simultanuous work (Carmona et al., 2019) investigate MARL for
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a mean-field case, only the centralized algorithm with infinite players is considered and directly
reduced to single-agent LQR when doing variable transformation.

Notations. In this section, we introduce some frequently used notations through the paper, while
others will be defined as they are needed. We denote by [n] the set of integers {1, 2, ..., n}, by N̄ all
of the nonnegative integers. We use 〈·, ·〉 to denote the inner-product for vectors, matrices, tensors,
and block-wise cases according to the context. For a matrix X ∈ Rd×d and a vector v ∈ Rd, we
define ‖v‖2X := v>Xv as the squared norm of v under metric matrixX . When v is a matrix or tensor,
‖v‖ refers to the norm of its vectorization. The mode-n matrix product of tensor X ∈ Rd1×···×dp
and a matrix X ∈ Re×dn is a tensor XX(n) ∈ Rd1×···×dn−1×e×···×dp . Without specifying, XX
denotes mode-1 matrix product. We denote by 1 and 0 the all-one and all-zero vector (resp. tensor)
respectively by the context, by σmin(X) the smallest eigenvalue of X .

2. Problem Formulation
We study discrete-time linear-quadratic MARL under mean-field settings with exchangeable finite n
agents. The states of the system at time-step t is given by {x(1)

t , x
(2)
t , · · · , x(n)

t }, where x(i)
t ∈ Rd

denotes the state vector of the ith agent (i ∈ [n]). Then the system dynamics is described as follows,

x
(i)
t+1 = Ax

(i)
t +Bu

(i)
t + Āx̄t + w

(i)
t , ∀i ∈ [n], (2.1)

where u(i)
t ∈ Rm denotes the control (the action), a Gaussian noise w(i)

t ∼ N(0, Id) independent of
each agent and time-step is added to the succeeding state, x̄t = 1/n

∑n
i=1 x

(i)
t denotes the mean-field

state of the system at time-step t. For such dynamics, we have a collective cost function of the
distributed system at time-step t,

ct =

n∑
i=1

x
(i)
t

>
Qx

(i)
t + u

(i)
t

>
Ru

(i)
t + x̄>t Q̄x̄t, (2.2)

where we also define the cost for agent i as c(i)
t = x

(i)
t

>
Qx

(i)
t + u

(i)
t

>
Ru

(i)
t + x̄>t Q̄x̄t at time-step t.

Furthermore, it is shown that optimal control for the ith agent can be written as a linear combination
of x(i)

t and x̄t, u
(i)
t = Kx

(i)
t + Lx̄t, where the same matrices {K,L} apply to all agents by the

symmetry results in optimal control (Arabneydi and Mahajan, 2016). By plugging u(i)
t into (2.1),

we can rewrite x(i)
t+1 as x(i)

t+1 = (A+BK)x
(i)
t + (Ā+BL)x̄t + w

(i)
t . Let Θ = (K;L) ∈ R2×m×d,

beginning with initial states {x(i)
0 }ni=1, our goal is to find the controls {u(i)

t }ni=1 (t ≥ 0) minimizing
the long-term collective cost,

C(Θ) = Ex0,w

[ ∞∑
t=0

γtct

]
= Ex0,w

∞∑
t=0

γt
n∑
i=1

(
x

(i)
t

>
Qx

(i)
t + u

(i)
t

>
Ru

(i)
t + x̄>t Q̄x̄t

)
. (2.3)

We denote by γ ∈ (0, 1) the discounted factor in the infinite horizon. The expectation is taken w.r.t.

all the initial states x0 =
(
x

(1)
0

>
, ..., x

(n)
0

>)> and all independent noise terms w = {w(i)
t }i∈[n],t∈N.

Therefore, our goal is to solve the following infinite horizon mean-field LQR problem,

minimize C(Θ) s.t. x
(i)
t+1 = Ax

(i)
t +Bu

(i)
t + Āx̄t + w

(i)
t , x

(i)
0 ∼ D for each i ∈ [n]. (2.4)

3. The Approach and Algorithm
To deal with the correlated states in the mean-field setting, we adopt the reparametrization trick in
Section A to obtain the dynamics below,

u
(i)
t = Kx

(i)
t + Lx̄t = M(x

(i)
t − x̄t) +Nx̄t ,My

(i)
t +Nȳt. (3.1)
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However, without a central controller the ith agent possesses M (i) (i ∈ [n]), which is defined as
the policy iterate of the ith agent in decentralized scenarios, as its local policy before convergence
and is restricted to communicating policies with neighbor agents over a network, although each
agent has access to the global mean state. Similar problems emerge when updating N (i)’s, which
is the mean-field policy of each agent before finding the optimum. Hence, we resort to performing
a decentralized optimization scheme with global consensus. As M and N are decoupled into two
similar update processes, below we denote by Θ̃(i) either M (i) or N (i). We concatenate policy
parameters together as a higher dimensional tensor, i.e., Θ̃ = [Θ̃(1); Θ̃(2); ...; Θ̃(n)] ∈ Rn×m×d to
give a compact formulation of the decentralized optimization problem:

min
Θ̃

C̃(Θ̃) :=
1

n

n∑
i=1

C(Θ̃(i)), s.t. Θ̃(i) = Θ̃(j) for (i, j) ∈ E , (3.2)

where the commumication network is considered as an unweighted and undirected graph G = {V, E}
with vertex set V and edge set E . Such a description gives a separable global objective function C̃(Θ̃)
and linear constraints indicating the connectivity property of the communication network. In next
section, we will introduce a more tractable formulation for algorithms by graph theory. Note that
the summands in (3.2) are disjoint components of Θ̃. Therefore, the gradient of the global objective
should be expanded as: ∇C̃(Θ̃) = 1/n

(
∇C

(
Θ̃(1)

)
; ...;∇C

(
Θ̃(n)

))
.

Communication Structure and Algerabic Representations. Below we capture the structure of G
with |V| = n and |E| = e by some tools from spectral graph theory. Define the edge-associated (Ωθ)
and agent-associated (Γθ) parameters Ωθ = diag(σθ1, · · · , σθe) � 0,Γθ = diag(γθ1 , · · · , γθn) � 0,
where θ can be replaced byM orN to represent two sets of configurations since the policy parameters
are decoupled into two optimization processes. Hereafter if we use symbols without specifying M or
N , the statement will hold for both M and N , respectively. We will see how they serve as step-size
for MF-DPGM in Section 3.1. We also use σij , where (i, j) ∈ E is the kth edge also denoted as
i ∼ j, as an alternative to σk. The quantity assigned to agent i is used for M (i) or N (i), or both by
the context. Denoting the graph Laplacian matrix and its normalized version Chung and Graham
(1997) as L and L̃ respectively, we define La := |L̃| ∈ Re×n by taking element-wise absolute
value on L̃. By definitions we can find the following relation: D = 1/2(L̃>L̃ + L>a La), where
D = diag(d1, ..., dn) with di as the degree of vertex (agent) i. For further proof, by calculation we

define Ω̃ := diag

({∑
j:j∼i σ

2
ij

}
j∈G

)
= 1/2(L̃>Ω2L̃ + LaΩ2La) , H := La>Ω2L + Γ2. , and

η2
i = 2

∑
j:j∼i σ

2
ij + γ2

i . With these parameters, we can rewrite (3.2) in a more tractable form for

numerical algorithms: min
Θ̃
C̃(Θ̃) := 1/n

∑n
i=1C(Θ̃(i)), s.t. L̃Θ̃(1) = 0. The idea of MF-DPGM

relies on this formulation from a primal-dual view.
3.1 The MF-DPGM Algorithm
The overall MF-DPGM can be split into following steps.
Initialization: Similar to Prox-MM Wright (1990), our method first initialize the policy parameter
Θ̃

(i)
−1

(
M

(i)
−1;N

(i)
−1

)
of agent i with zeros at iteration -1, and then endow policies at step 0 with Θ̃

(i)
−1’s.

Such a setup benefits further updates by controlling the constants of theoretical bounds in Section 4.
Policy running and evaluation: At the beginning of the kth iteration, we sample np trajectories
of each agent i according to its own current policy Θ̃

(i)
k , to estimate the action-value function by

1/np
∑np

p=1 Q̂
π
i,p(x

(i)
t , u

(i)
t ) for policy evaluation in model-free settings1. Furthermore, to retain

1. Also, we can share part of noise with term u
(i)
t in 2.1 to make stochastic policies. To highlight our main idea, we focus

on theoretical results with exact gradients. See Yu (1994) for a straightforward statistical error.
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Algorithm 1: Mean-Field Decentralized Policy Gradient Method (MF-DPGM)

Data: Agent dynamics n,A,B, Ā; Cost parameters Q,R, Q̄; Initial state distribution D.
Input: Network G; Ω,Γ; Length of horizon T ; Number of sample paths np; Estimation error ε.
Output: Estimation of optimal control policies Θ̂.
Initialization: Θ̃−1 = 0; Θ̃

(i)
0 = ∇C(i)(0)η−2

i /n, ∀i ∈ [n]; Iteration k ← 1.
while ε(k) > ε do

for path p = 1 to np do
for t = 1 to T do

u
(i)
t = M

(i)
k y

(i)
t +N

(i)
k ȳt;

x
(i)
t+1 ← Ax

(i)
t +Bu

(i)
t + Āx̄t + w

(i)
t , for all i ∈ [n] in paralell;

Q̂πi,p(x
(i)
t , u

(i)
t )←

∑T
s=t γ

s−tc
(i)
s ;

end
end
Compute ∇̂C(Θ̃

(i)
k )← 1/np

∑np

p=1

∑T
t=1 Q̂

π
i,p(x

(i)
t , u

(i)
t ) · ∇ log πΘ̂(i)(u

(i)
t |x

(i)
t ), for all i ∈ [n]

Communication and update: For all i ∈ [n],

Θ̃
(i)
k+1 ← Θ̃

(i)
k −

1

(ηθi )2

(
1

n

(
∇Ĉ

(
Θ̃

(i)
k

)
−∇Ĉ

(
Θ̃

(i)
k−1

))
− 2

∑
j:j∼i

(σθij)
2Θ̃

(j)
k + (γθi )2

(
Θ̃

(i)
k−1 − Θ̃

(i)
k

)
+
∑
j:j∼i

(σθij)
2
(

Θ̃
(j)
k−1 + Θ̃

(i)
k−1

))
(3.3)

Θ̂← Θ̃k , k ← k + 1
end

accuracy for large populations, we adopt gradient estimator in REINFORCE Sutton et al. (2000)
for the cost function instead of the biased zeroth order method Fazel et al. (2018). In practice, the
deterministic policy u(i)

t can be realized by a Gaussian policy πΘ(i) with a nearly zero variance.
Communication and update: After running policies at the kth iteration, each agent i collects
policies from neighbors and its own gradient estimators of the cost function at the kth and (k − 1)th

iterations, and combines them linearly by Ωθ and Γθ as a decentralized version of policy gradient
method Baxter and Bartlett (2001) to update the local policy Θ̃

(i)
k . As a result, we can view tunable

parameters Ωθ and Γθ as step-sizes in MF-DPGM. See (3.3) for a detailed update. A practical
choice (Gemulla et al., 2011; Shi et al., 2015) is Ω2

θ := α2I as a multiple of identity,
A full description of MF-DPGM is shown in Algorithm 1. Due to decentralized nature, our

convergence measure, ε(t) = mins∈[t]

∣∣∣1/n∑n
i=1C(Θ̃

(i)
s )− C̃(Θ̃∗)

∣∣∣+ ‖ΩL̃{Θ̃k}(1)‖2 for t ∈ N̄ ,
not only takes cost error into account, but also consider consensus error to guarantee an identical
optimal policy in Section 2. See Appendix B for a connection with the primal-dual paradigm.
4. Theoretical Results and Analysis
As many other dencentralized algorithms, our convergence results also rely on some smoothness
property (Lipschitzness of the gradient) of the objective. However, we notice that the optimization
landscape for each agent is not strictly smooth due to unstability ofA+BM (resp. A+Ā+BN ). At
the boundary between stable and unstable policies, the cost function rapidly becomes infinity, which
violates the traditional smoothness conditions. To address this issue, we regulate the parameters Ω

and Γ for a small step-size to set the next iterate Θ̃
(i)
t+1 sufficiently close to the current one, so that:

Σ
Θ̃i

t+1
≈ Σ

Θ̃i
t
+O

(
‖Θ̃i

t+1 − Θ̃i
t‖
)

. Using tools from Fazel et al. (2018), we show in Lemma F.2-E.1
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the continuity property of the cost functions, state trajactories, and gradients of cost corresponding
to policy M and N within an adaptive area for each agent. Accordingly, we have the following
condition on edge and agent associated parameters, i.e. Ω and Γ to guarantee the development of our
decentralized update.
Condition 4.1 . The parameters of MF-DPGM are chosen to satisfy for any k ≥ 1 and i ∈ [n],(

Ωθ + Γ2
θ

)
/2 � (2c+ 1)Φθ/n+ 4κΦθΓ

−2
θ Φθ/n

2, c = max{1, 6κ}, Γ2
θ � ΦθΓ

−2
θ Φθ/n

2, (4.1)

γ2
i Fθ(θ

(i)
k )− nγ2

i + βi
n

Fθ(θ
(i)
k−1) ≥

∑
j:j∼i

σ2
ij

(
‖θ(i)
k ‖+ ‖θ(i)

k−1‖+ Fθ(θ
(j)
k−1)− 2Fθ(θ

(i)
k )
)
, (4.2)

where κ = 1/λmin

(
ΩFH−1F TΩ

)
, (4.2) admits two sets of conditions when replacing θ by M

or N exclusively, along with FM (X) = min {ξσmin(Q)/[4(‖A+BX‖+ 1) · ‖B‖ · C(X)], ‖X‖}
and FN (X) = min

{
ξ̄σmin(Q + Q̄)/[4(‖A + BX‖ + 1) · ‖B‖ · C(X)], ‖X‖

}
, Similarly ΦM =

diag(βM1 , ..., βMn )⊗ Imd ∈ Rnmd×nmd and ΦN = diag(βN1 , ..., β
N
n )⊗ Imd are almost-smoothness

constants specified in Lemma F.2.
We can see from proof that κ encodes the network structure and c helps construct the potential

function indicating one-step progress of MF-DPGM. By properly choosing Ωθ and Γθ, we can meet
the condition, so that potential function (E.1) decreases and boundary condition (F.9) of two adjacent
iterates is met by dynamically adjusting as the adaptive area in (F.9), which is illustrated in F.3.
Below we layout the global convergence result.
Theorem 4.2. Given Condition 4.1, then for time-step t ≥ 1, MF-DPGM gives

min
s∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(Θ̃(i)
s )− C̃(Θ̃∗)

∣∣∣∣∣+ ‖ΩL̃{Θ̃s}(1)‖2 ≤ 8αgCC′/t︸ ︷︷ ︸
cost error bound

+ 20C′/t︸ ︷︷ ︸
consensus error bound

, (4.3)

where αg = max{αMg , αNg } with αMg = ‖ΣM∗‖/[σmin(Σ
(i)
0 )2σmin(R)] and αNg =

‖ΣN∗‖/[σmin(Σ0)2σmin(R)] is a problem related constant for gradient domination also appear-
ing in Lemma F.3, Θ̃∗ indicates the optimal policy parameters, and

C′ := C̃(Θ̃0)− C̃(Θ̃∗) + 2∇C(0)>Φ−1∇C(0)/n, C := 4
∑

(i,j):i∼j

σ2
ij +

n∑
i=1

γ2
i . (4.4)

Proof. See Appendix F.5 for a detailed proof.
The main upshot is to characterize in detail the first global sublinear convergence rate for the

overall error including the cost and consensus components. More precisely, MF-DPGM not only
drives the average cost of agents to the optimal cost over time, but also guarantees heading for the
same optimal policy. An alternative way to display the rates is distributedly showing for each agent
with slightly different constants where C′ is decomposed for each. Moreover, the optimization of Θ̃
can be split into development of local and mean-field policy respectively, which is frequently observed
in theoretical illustration and proof, while the difference sits between the only one mean-field state
associated with N (i)’s and corresponding multiple states for M (i)’s.

5. Conclusion
In this paper, focusing on a simple yet fundamental model LQR under the mean-field setting, we
propose the first decentralized policy gradient method where each agent update the local policy
by combining policies from neighborhood with its own policy. which is applicable to complex
mean-field models. In addition, we quantify the non-convex problem geometry by several almost
continuity results, which is combined with one-step progresses for our algorithm to establish a
sublinear global convergence rate for LQR. Additional experiments justify our theoretical results and
show a promising performance.
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Appendix A. Policy Gradient with Reparametrized States

In this section, we provide the details for Reparametrizing states in mean-field dynamics in Section 3,
as direct policy gradients over the matrix parameters K and L lead to gradients of K (resp. L)
containing the other parameter L (resp. K) due to the correlation mean-field term x̄t across different
agents, which is hard to apply analysis of standard policy gradients.

We characterize the optimal cost from a state going forward (see Eq. (A.6)) with (algebraic)
Riccati equations (Bittanti et al., 2012) governed by policy parameters (i.e., K,L). Note that in the
formulation of the previous section, it is hard to directly obtain the optimal control u(i)

t ’s depending on
both x(i)

t ’s and x̄t’s correlated in a single dynamics. Hence we adopt the following reparameterization
method to derive decoupled Riccati equations.

u
(i)
t = Kx

(i)
t + Lx̄t = M(x

(i)
t − x̄t) +Nx̄t ,My

(i)
t +Nȳt. (A.1)

where we call M = K the optimal local policy and N = K + L the optimal mean-field policy.
Below we show how to derive policy gradient to update these policy parameters separately. We
rewrite the dynamic equations below:

y
(i)
t+1 = (A+BM)y

(i)
t + w

(i)
t − w̄t, ȳt+1 = [A+ Ā+BN ]ȳt + w̄t, (A.2)

where w̄t = 1/n
∑n

i=1w
(i)
t . Then we have

C(Θ) = Ey0∼D,w

∞∑
t=0

γt
( n∑
i=1

y
(i)
t

>
(Q+M>RM)y

(i)
t + nȳ>t (Q+ Q̄+N>RN)ȳt

)
(A.3)

=

n∑
i=1

Tr[(Q+M>RM)Σ
(i)
M ] + nTr[(Q̃+N>RN)ΣN ],

where Σ
(i)
M = Ey0∼D,w[

∑∞
t=0 γ

ty
(i)
t y

(i)
t

>
], ΣN = Eȳ0∼D̄,w

[∑∞
t=0 γ

tȳtȳ
>
t

]
, Q̃ = Q + Q̄, D

denotes the i.i.d. initial state distribution of y(i)
0 , and D̄ indicates the distribution of mean-field

ȳ0. We will omit the explicit distributions for expectations without ambiguity. With an abuse of
notations, let C(M (i)) = Tr[(Q + M>RM)Σ

(i)
M ], C(N) = nTr[(Q̃ + N>RN)ΣN ], C(M) =

mini∈[n] Tr[(Q+M>RM)Σ
(i)
M ]. From Bellman equation for cost functions, it follows that

CΘ(y0) =
n∑
i=1

y
(i)
0

>
(Q+M>RM)y

(i)
0 + nȳ0P̄N ȳ0

+ γEw0CΘ(diag(A+BM)y0 + w0 − w̄0), (A.4)
where CΘ(y) is the value function with initial state y, diag(X) denotes the nd× nd block-diagonal
matrix with matrix X ∈ Rd being the block elements. We assume that the value function takes a

quadratic form CΘ(y0) =
∑n

i=1 y
(i)
0

>
PMy

(i)
0 + nȳ>0 P̄N ȳ0 + αΘ, where PM , P̄N ∈ Rd×d and we

ignore the cross terms as E[y>0 P̄N ȳ0] = 0. Let Ay = A + BM , Āy = A + Ā + BN , then by
Bellman equation (A.4), we haven∑

i=1

y
(i)
0

>
PMy

(i)
0 + nȳ>0 P̄N ȳ0 + αΘ =

n∑
i=1

y
(i)
0

>
[γA>y PMAy +Q+M>RM ]y

(i)
0

+ nȳ>0 [Q+ Q̄+ N̄RN + γĀ>y P̄N Āy]ȳ0 + γ
n+ 1

n
TrPM + γ Tr P̄N + γαΘ, (A.5)
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which implies
PM = Q+M>RM + γA>y PMAy,

αΘ =
γ

1− γ

(
n+ 1

n
TrPM + P̄N

)
, (A.6)

P̄N = Q+ Q̄+N>RN + γĀ>y P̄N Āy.

Hence M and N are decoupled for Riccati equations after transformation.The gradient with respect
to M in (A.4) gives

∇MCΘ(y0) = (2RM + 2γB>PMAy)

n∑
i=1

y
(i)
0 y

(i)
0

>
+ γE∇MCΘ(y1). (A.7)

By applying recursion yt+1 = (A+BM)yt + w
(i)
t − w̄t (t ≥ 0) to (A.7) iteratively, we can finally

obtain
∇MCΘ(y0) = 2

(
RM + γB>PMAy

) n∑
i=1

Ey0,w

∞∑
t=0

γty
(i)
t y

(i)
t

>

= 2
(
RM + γB>PMAy

) n∑
i=1

Σ
(i)
M

, 2ΞM

n∑
i=1

Σ
(i)
M . (A.8)

Similarly, we have

∇NCΘ(y0) = 2
(
RN + γB>P̄N Āy

)
ΣN , 2ΞNΣN . (A.9)

The ΣN in∇NCΘ(y0) is a shared expectation term for all the agents resulted from mean-field states.

Appendix B. A primal-dual view on MF-DPGM

To see this, we demonstrate the neat connection between our algorithm and primal-dual paradigm
commonly used for solving constrained programming. Let us introduce the augmented Lagrangian
function (A) in tensor variables:

Ak := A(Θ̃k,Λk) = C̃(Θ̃k) + 〈Λk, L̃{Θ̃k}(1)〉+
1

2

∥∥∥∥Ω
[
L̃{Θ̃k}(1)

]
(1)

∥∥∥∥2

, (B.1)

where Λk ∈ Re×m×d is the dual variable at iteration k, which is updated as Λk+1 = Λk +

Ω
[
L̃{Θ̃k}(1)

]
(1)

(*). By plugging this into (3.3) and using definition of H we have

∇C̃(Θ̃k) +H(Θ̃k+1 − Θ̃k)(1) + L̃{Θ̃k}(1) + L̃>Ω2L̃{Θ̃k+1}(1) = 0. (B.2)
Viewing (B.2) as the optimal (first-order) condition of some function, we observe that update (3.3) is
equivalent to

Θ̃k+1 = arg min
Θ̃

〈
∇C(Θ̃k) + L̃>Λk(1), Θ̃− Θ̃k

〉
+

1

2
‖ΩL̃Θ̃(1)‖2 +

1

2

∥∥∥∥ΩLa
(
Θ̃− Θ̃k

)
(1)

∥∥∥∥2

+
1

2

∥∥∥∥Γ
(
Θ̃− Θ̃k

)
(1)

∥∥∥∥2

(B.3)

together with (*), where the third term of (B.3) encodes the network structure that we utilized
for neighborhood average. Terms like ‖ΩL̃Θ̃(1)‖2 show how close policies of agents to each
other are with policy Θ̃ by definitions in § ??. Such a primal-dual interpretation is closely re-
lated to some classical comstrained optimization methods, such as the Uzawa method Uzawa
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(a) 3-dimensional dynamics
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(b) 4-dimensional dynamics
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(c) 5-dimensional dynamics

Figure 1: Simulation results (convergence curves) on complete (blue), random (orange), grid (green)
and circle (red) networks, as well as different dynamics d = 3, 4, 5.

(1958) and the prox-MM Rockafellar (1976); Wright (1990). Following distributed constrained
optimization approaches Jakovetić et al. (2014); Hong et al. (2016), we set the error ε(t) =

mins∈[t]

∣∣∣1/n∑n
i=1C(Θ̃

(i)
s )− C̃(Θ̃∗)

∣∣∣+ ‖ΩL̃{Θ̃k}(1)‖2 for t ∈ N̄ to monitor consensus.

Appendix C. Simulation and Result Analysis

We conduct simulation experiments shown in Figure 1(a)-1(c), where we synthesize three different
multi-agent systems by specifying dynamics parameters A,B, Ā and cost parameters Q,R, Q̄. under
the LQR setting each with d = 3, 4, 5, n = 25, and action space m = d; See Appendix D for
more setup details. We can see from the numerical results that when fixing the dynamics, different
topologies of communication networks lead to diverse performances. The convergence rate ranges
from the best to the worst over complete, random, grid, and circle graphs respectively. This reveals
the influence of communication structure in control for large coupled systems, where a decentralized
algorithm achieves an performance improvement as more possible communication links among
agents are established. Moreover, it is shown that the dynamics settings also have an impact on the
number of iterations to achieve convergence and stability. More precisely, the system with lower
dimension enjoys a faster and stable convergence, which corresponds to the constant αg of the overall
bound in Theorem 4.2.

Furthermore, We plot the convergence curves in Figure 2(a) for different numbers of agents to
show the effectiveness of our method at different scales, where we also justify that the mean-field
approximation works better as the size of the population grows by the increasing performance with
the larger population, as the effect of mean-field phenomenon is more significant in larger systems.
In addition, although it is unfair to compare against the centralized setting, where the controller has
access to the costs of all agents and updates their policies simultaneously and identically, we plot the
comparison in Figure 2(b) for identification with n = 25. We reproduce a baseline of decentralized
policy gradient with gossip matrices (Richards and Rebeschini, 2019), which aggregates the updated
policies from the neighborhood (aggreg. neighbor). Note that our algorithm compares favorably
against this baseline and is competitive with the centralized one, which gives a better performance
achievable.

13



WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

0 50 100 150 200 250 300
Steps

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Op
tim

al
ity

 G
ap

nb_agents=30
nb_agents=40
nb_agents=50
nb_agents=60

(a) Convergence curves on different popula-
tions n over a circle graph.

(b) Comparison with baselines on a cir-
cle graph.

Figure 2: Simulation results with different size of populations and comparison with baselines.
Appendix D. Experiment Setup and Additional Details

In this section, We provide additional configuration details and analysis of the experimental results in
Section C.

Experiment setup. In the experiement we intend to demonstrate the convergence performance of
our algorithm under different graph structures and different dynamics. We consider policy learning
with global consensus as follows:

min
Θ̃

C̃(Θ̃) :=
1

n

n∑
i=1

C(Θ̃(i)), s.t. Θ̃(i) = Θ̃(j) for (i, j) ∈ E , (D.1)

where for all i,
x

(i)
t+1 = Ax

(i)
t +Bu

(i)
t + Āx̄t + w

(i)
t , (D.2)

c
(i)
t = x

(i)
t

>
Qx

(i)
t + u

(i)
t

>
Ru

(i)
t + x̄>t Q̄x̄t. (D.3)

The state transition matrix A,B, Ā is generated by first sampling a random uniform matrix from
0 to 1 and then tossing a biased coin with probability 0.7 for setting each element zero to keep
sparsity for computational efficiency. Also, such transition matrices may lead to smoother loss
surfaces. For the reward function we adopt diagonal matrices with each element on the diagonal
from 0 to 1 and sparse perturbation for off-diagonal entries. We test on four different graphs as the
communication network G: 1) complete graph 2) grid graph 3) circle graph and 4) random graph. The
random graph is essentially an Erdos-Rényi graph generated with connectivity of 0.25. Alternatively,
for each pair (i, j) with i ∈ [n], j ∈ [n], we toss a coin to decide whether there will be an edge
between agent i and agent j. As we toss coins two times for both (i, j) and (j, i), an equivalent
random graph is obtained with 0.75 probability for each edge to vanish. We set Ω2 = Γ2 = I as
identity matrices to better understand the popular average of neighborhood scheme. The results
of convergence curves are presented in Figure 1(a)- 1(c), where y-axis denotes the error measure
ε(t) = mins∈[t]

∣∣∣1/n∑n
i=1C(Θ̃

(i)
s )− C̃(Θ̃∗)

∣∣∣+ ‖ΩL̃{Θ̃k}(1)‖2 for t ∈ N̄ .

For the impact of the topology of the communication graphs on the convergence rate, when
choosing Ω and Γ according to Section 4, we can easily verify that the condition (4.1) holds, so that
constant C of the bound in Theorem 4.2 can be reparameterized as follows,

C ≤ 320 max{σmax(Z), 1}
min{σmin(LG), 1}

∑
i∼j

( √
βiβj√
didjn

+
β̄

4

)
, (D.4)
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where β̄ = 1/n
∑n

i=1 βi;see more details in Sun and Hong (2018). Hence the global rate is connected
to the algebraic summary, i.e., spectral gap, that captures the connectivity of the communication
network, which quantifies how the connectivity of four different graphs impacts convergence perfor-
mance of MF-DPGM.

For the impact of the dimension of dynamics on the convergence, high dimensions have a higher
chance to introduce high variance in Σ

(i)
0 depending on the initial random states, and different cost

dynamics also account a change in αg. In addition, we observe that performance gap between
complete graph and other two deterministic graphs increases in higher dimension configuration,
which implies an interplay between communication structure (C) and system dynamics (αg) in the
convergence rate.

Appendix E. Proof Sketch

We sketch the proof of results in Section 4. Define Σ
(i)
0 := Ey(i)

0 y
(i)
0

>
, Σ0 := Eȳ0ȳ

>
0 , ξi :=

σmin(Σ
(i)
0 ), ξ̄ = σmin(E

y
(i)
0 ∼D

ȳ0ȳ
>
0 ), where σmin(X) denotes the smallest singular value of X . We

denote by σmin(X) the second smallest eigenvalue of X .
Geometry of cost functions. As mentioned in Section 4, Theorem 4.2 requires moderate smoothness
of the landscape of cost functions. Based on the almost Lipschitzness of positive definite matrix
Pθ parameterizing the optimal cost from a state going forward, and almost Lipschitzness of the Σθ

which plays an key role in cost function. Lemma F.2 for each cost function with an almost Lipschitz
gradient and Lemma F.3 for each cost function almost dominated by the gradient are crucial in
bounding the one-step differences in Lemma F.6 and F.7.

Progress of decentralized iterations. To estimate one-step progress of Algorithm 1, we con-
struct the auxiliary potential function U to show certain monotonicity along the solution path in both
primal (Θ̃) and dual (Λ) variables:

Uk+1 = Uc

(
Θ̃k+1, Θ̃k,Λk+1

)
:= Ak+1 +

2κ

n2

∥∥∥Γ−1Φ
(
Θ̃k+1 − Θ̃k

)∥∥∥2
(E.1)

+
c

2

(∥∥∥ΩL̃{Θ̃k+1}(1)

∥∥∥2
+
∥∥∥Θ̃k+1 − Θ̃k

∥∥∥2

H+L̃/n

)
,

where c is a constant chosen according to Condition 4.1 and Ak+1 is the augmented Lagrangian
defined in (B.1). The decrement of the potential function at each step is identified with a metric
between two adjacent primal iterates in the following lemma.

Lemma E.1. When the parameters of MF-DPGM are chosen to satisfy (4.1) then it holds that

Uk − Uk+1 ≥ 1
4

∥∥∥Θ̃k+1 − Θ̃k

∥∥∥2

Ω̃+Γ2
+ κ ‖Vk+1‖2H (E.2)

for any k ≥ 0, where Vk+1 :=
(
Θ̃k+1 − Θ̃k

)
−
(
Θ̃k − Θ̃k−1

)
. Moreover, we have the following

bounds:

Uk ≤ U0 ≤ C̃(Θ̃0) +
2∇C̃(0)>Φ−1∇C̃(0)

n
, Uk+1 ≥ C > −∞ (E.3)

for any k ≥ 1, where 0 ∈ Rnmd is the all zero vector, and∇C̃(0) = 1/n(∇C(1)(0), ...,∇C(n)(0)).

Proof. Detailed proof can be found in the appendix of Sun and Hong (2018).

Note that decreasing potential function in Lemma E.1 also tracks stability of decentralized LQR
in the optimization process. We start by optimality condition (B.2) and derive upper bounds for
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objective gradient norms by the distances of primal variables. Then Lemma E.1 is applied reducing
the bounds to differences of adjacent potential functions. Similarly, the consensus error is controlled
using Lemma F.6 and F.7, where almost smoothness of costs (F.10) is involved, and processed by
Lemma E.1 to keep the same difference terms as those of gradient norms. Finally, combining two
bounds of similar structure with Lemma F.3 we establish Theorem 4.2. See F.5 for a detailed proof.

Appendix F. Detailed Proof of Main Results

In this section, we develop detailed proofs for the main result in Section 4 and give complementary
details for theoretical claims.

In the sequel, due to the similarity between evolutions of local policies M , and mean-field
policy N , we mainly focus on M (i)’s to state and prove the results, where similar results are
straightforward up to constants in Ā, Q̄, etc. In some cases, to stress on the discrepancy we formulate
both illustrations, or to establish a unified higher-level convergence results, we use compact tensor /
vectorization representations, such as Θ̃,M for statements. Also, we omit superscript for agent i
without confusion in a specific proof.

We first define the following operators on symmetric matrix X ,

HM (X) =

∞∑
t=0

γt(A+BM)tX[(A+BM)>]t,

HN (X) =
∞∑
t=0

γt(A+ Ā+BN)tX[(A+ Ā+BN)>]t.

(F.1)
We also recall that for X ∈ Rd×m, we define

FM (X) = min {ξσmin(Q)/[4(‖A+BX‖+ 1) · ‖B‖ · C(X)], ‖X‖} , (F.2)

FN (X) = min
{
ξ̄σmin(Q+ Q̄)/[4(‖A+BX‖+ 1) · ‖B‖ · C(X)], ‖X‖

}
, (F.3)

which are frequently used notations to simplify our conditions and proof. For notation convenience,

define ξ := infi∈[n][σmin(E
y
(i)
0 ∼D

y
(i)
0 y

(i)
0

>
)], ξ̄ := σmin(E

y
(i)
0 ∼D

ȳ0ȳ
>
0 ), where σmin(X) refers to

the smallest singular value of matrix X . In addition, we define

Σ
(i)
0 , Ey(i)

0 y
(i)
0

>
, ‖HM‖ , sup

X

‖HM (X)‖
‖X‖

. (F.4)

It follows that the operator norms are bounded by the composite cost and the extremal singular values
of cost matrices.

Lemma F.1 (Upper bounds of operatorsHM andHN ). It holds that

‖HM‖ ≤
C(M)

ξσmin(Q)
, ‖HN‖ ≤

C(N)

ξ̄σmin(Q+ Q̄)
. (F.5)

Using the operator norm bounds and definitions, we show the continuity property of the cost
functions, state trajactories, and gradients of cost corresponding to policy M and N with an adaptive
area for each agent. Lemma F.4-F.2 quantify the problem geometry from different perspectives in
distributed settings.
Proof. By the definition in (F.4) and Σ0 = Eȳ0ȳ

>
0 , we can obtain for any i ∈ [n],

HM (Σ
(i)
0 ) = Σ

(i)
M , HN (Σ0) = ΣN (F.6)

16



ICML 2020 WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

By the definition of the operator norm, for x ∈ Rd of unit vector norm and matrix X of unit spectral
norm, for any i ∈ [n] we have

x>(HM (X))x =

∞∑
t=0

Tr([(A+BM)>]txx>(A+BM)tX)

=
∞∑
t=0

Tr(Σ(i)
0

1/2
[(A+BM)>]txx>(A+BM)tΣ

(i)
0

1/2
Σ

(i)
0

−1/2
XΣ

(i)
0

−1/2
)

≤
∞∑
t=0

Tr(Σ(i)
0

1/2
[(A+BM)>]txx>(A+BM)tΣ

(i)
0

1/2
)‖Σ(i)

0

−1/2
XΣ

(i)
0

1/2
‖

= x>HM (Σ
(i)
0 )‖Σ(i)

0

−1/2
XΣ

(i)
0

1/2
‖

(a)

≤ ‖HM (Σ
(i)
0 )‖

σmin(Ex(i)
0 x

(i)
0

>
)

=
‖Σ(i)

M ‖
ξ

, (F.7)

where (a) uses the property ‖Σ(i)
0 ‖ ≥ σmin(Σ

(i)
0 ). On the other hand, we can derive a upper bound

on ‖Σ(i)
M ‖ as follows

‖Σ(i)
M ‖ ≤ Tr(Σ(i)

M ) ≤
Tr(Σ(i)

M )σmin(Q)

σmin(Q)

≤
Tr(Σ(i)

M (Q+M>RM))

σmin(Q)

=
C(i)(M)

σmin(Q)
. (F.8)

Combining (F.17) and (F.18) and applying uniform lower bound of C(i)(M)’s we have ‖HM‖ ≤
C(M)

ξσmin(Q) . Similar computation gives the upper bound for the norm ofHN .

F.1 Main Lemmas for the Geometry of Cost Functions

According to Section E, appropriate smoothness of the landscape of cost functions is studied to
characterize convergence rates. The following lemma for each cost function with an almost Lipschitz
gradient, which is a result of the almost Lipschitzness of positive definite matrix Pθ and almost
Lipschitzness of the Σθ, shows significance in bounding the one-step differences in Lemma F.6
and F.7.

Lemma F.2. (Almost β-smoothness of private cost functions) Assume that for each i ∈ [n] and any
M̂ (i),M (i) ∈ Rm×d it holds that

‖M̂ (i) −M (i)‖ ≤ FM (M (i)),

‖N̂ (i) −N (i)‖ ≤ FN (N (i)), (F.9)
then for the i-th agent, we have

‖∇C(M̂ (i))−∇C(M (i))‖ ≤ βMi ‖M̂ (i) −M (i)‖,

‖∇C(N̂ (i))−∇C(N (i))‖ ≤ βNi ‖N̂ (i) −N (i)‖, (F.10)
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where βMi = poly
(
B,E‖y(i)

0 ‖2,
C(M

(i)
0 )

ξiσmin(Q)

)
, βNi = poly

(
B,E‖ȳ0‖2,

C(N
(i)
0 )

ξ̄σmin(Q+Q̄)

)
denotes the

almost smoothness constants, and B = {‖A‖, ‖B‖, ‖R‖, σ−1
min(R)}.

Proof. See Lemma 6 in Fazel et al. (2018) for a detailed proof.

Another crucial property to guarantee the global convergence of MF-DPGM is the gradient
domination condition, where the difference of the current cost and optimal cost is bounded by the
current gradient norm. We conclude this landscape in M and N for each agent in the lemma below.

Lemma F.3. (Gradient domination of cost functions) Suppose (M∗;N∗) is the optimal policy for each
agent, and Σ

(i)
0 is full rank. Then C(M (i)), C(N (i)) is gradient dominated for each i, that is,

C(M (i))− C(M∗) ≤ αMg ‖∇C(M (i))‖2,

C(N (i))− C(N∗) ≤ αNg ‖∇C(N (i))‖2, (F.11)
where αMg and αNg are geometry-dependent coefficients specified in Theorem 4.2.

Proof. See Appendix F.4 for a detailed proof.

As Σ
(i)
M � Σi

0, the full-rank condition essentially prevents the denominator of αMg from going to
zero, so that a stationary point (∇C(M (i)) = 0) on the R.H.S. of (F.11) implies an optimal policy
M (i). Although ΣN(i) � Σ0, the difference from single-agent setting is the absence of the assumption

for Σ0. In fact, we have Σ0 = 1/n2E
(∑

y
(i)
0

)(∑
y

(i)
0

)>
= 1/n2E

∑
i,j y

(i)
0 y

(j)
0

>
= Ey(i)

0 y
(i)
0

>
,

where i.i.d. initial state distributions and linearity of expectation are used. Hence, the only condition
in Lemma F.3 suffices to guarantee gradient domination for both local and mean-field policies.
Such detail reveals additional advantages of condition relaxation from mean-field symmetry besides
dimensionality reduction.

F.2 Lemmas for Almost-Smoothness of Cost Functions

In this subsection, we present two almost continuity lemmas on which Lemma F.2 is based. One of
them is the following almost Lipschitz continuity of Pθ parameterizing the cost functions.

Lemma F.4 (Almost Lipschitzness of Pθ (value function)). For any two M (i) and M (i)′ close
enough to each other, that is,

‖M (i) −M (i)′‖ ≤ min

{
ξiσmin(Q)

4(‖A+BM (i)‖+ 1)‖B‖C(M (i))
, ‖M (i)‖

}
, (F.12)

then

‖PM(i)′ − PM(i)‖ ≤
6‖M (i)‖‖R‖
ξ2
i σ

2
min(Q)

(‖M (i)‖‖B‖‖A+BM (i)‖+ ‖M (i)‖‖B‖+ 1) · ‖M (i)′ −M (i)‖.

(F.13)
Similarly, if

‖N (i)′ −N (i)‖ ≤ min

{
ξ̄σmin(Q+ Q̄)

4(‖A+ Ā+BN (i)‖+ 1)‖B‖C(N (i))
, ‖N (i)‖

}
, (F.14)

then we have

‖P ′
N(i) − PN(i)‖ ≤

6‖N (i)‖‖R‖
ξ̄2σ2

min(Q+ Q̄)
(‖N (i)‖‖B‖‖A+ Ā+BN (i)‖+ ‖N (i)‖‖B‖+ 1)‖N (i)′ −N (i)‖.
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Proof. We first define the following operators on symmetric matrix X ,

HM (X) =
∞∑
t=0

γt(A+BM)tX[(A+BM)>]t,

HN (X) =
∞∑
t=0

γt(A+ Ā+BN)tX[(A+ Ā+BN)>]t,

JM (X) = γt(A+BM)X(A+BM)>,

JN (X) = γt(A+ Ā+BN)X(A+ Ā+BN)>. (F.15)
Then we can rewrite the difference between PM and PM ′ as
‖PM ′ − PM‖

= ‖HM ′(Q+M ′
>
RM ′)−HM (Q+M>RM)‖

≤
∥∥HM ′(Q+M ′

>
RM ′)−HM (Q+M ′

>
RM ′)−

(
HM (Q+M>RM)−HM (Q+M ′

>
RM ′)

)∥∥
≤ 2‖HM‖2‖JM − JM ′‖‖(M ′)>RM ′‖+ ‖HM‖‖M>RM − (M ′)>RM ′‖
(a)

≤ ‖HM‖
(
‖(M ′)>RM ′ −M>RM‖+ 2‖HM‖‖JM − JM ′‖‖M>RM‖

)
+ ‖HM‖‖M>RM − (M ′)>RM ′‖
= 2‖HM‖2‖JM − JM ′‖‖M>RM‖+ 2‖HM‖‖(M ′)>RM ′ −M>RM‖, (F.16)

where (a) uses the triangle inequality for `2−norm, and the assumption ‖HM‖‖JM − JM ′‖ ≤ 1/2
for the coefficient of ‖(M ′)>RM ′−M>RM‖. To bound the first term in (F.16), letting δ = M−M ′,
we take the following decomposition for ‖JM − JM ′‖ for each matrix X ,

‖(JM − JM ′)(X)‖ = ‖(A+BM)X(Bδ)> + (Bδ)X(A+BM)> − (Bδ)X(Bδ)>‖
≤ 2‖(A+BM)‖‖X‖‖B‖‖δ‖+ ‖B‖2‖δ‖2‖X‖. (F.17)

According to the definition of the spectral norm and the assumed condition on ‖M −M ′‖ (F.15), we
are able to bound the first term as below.

2‖HM‖2‖JM − JM ′‖‖M>RM‖
≤ 2‖HM‖2(2‖(A+BM)‖‖B‖‖M −M ′‖+ ‖B‖2‖M −M ′‖2)‖M>RM‖

≤ 4‖HM‖2‖B‖‖M −M ′‖
(
‖(A+BM)‖+

σmin(Q)ξ

8C(Θ)(‖A+BM‖+ 1)

)
‖M>RM‖

≤ 4‖HM‖2‖B‖(‖(A+BM)‖+ 1)‖M>RM‖‖M −M ′‖. (F.18)
Note that ‖M ′ −M‖ ≤ ‖M‖, the second term in (F.16) can be bounded as By plugging (F.17) and
(F.18) into (F.16), we can finally obtain the almost Lipschitzness result for PM . Similarly, we can
also derive an argument for PN as (F.16) below: Then applying a slightly different upper bound for
‖HN‖ lead to the result.

The next lemma quantifies a Lipschitz continuity condition for Σ
(i)
θ . Due to the policy gradient

structure, it plays an important role in bounding a part of the gradient difference of cost functions.

Lemma F.5 (Almost-Lipschitzness of Σθ). For each i ∈ [n], if the following holds

‖M (i) −M ′(i)‖ ≤
{

σmin(Q)ξi

4C(M (i))‖B‖(‖A+BM (i)‖+ 1)
, ‖M (i)‖

}
, (F.19)
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it follows that∥∥∥Σ
(i)
M ′ − Σ

(i)
M

∥∥∥ ≤ 4

(
C(M (i))

σmin(Q)

)2
‖B‖(‖A+BM (i)‖+ 1)

ξi

∥∥∥M (i) −M ′(i)
∥∥∥ . (F.20)

Also, when

‖N (i) −N ′(i)‖ ≤
{

σmin(Q+ Q̄)ξ̄

4C(N (i))‖B‖(‖A+ Ā+BN (i)‖+ 1)
, ‖N (i)‖

}
, (F.21)

we have∥∥∥Σ
(i)
N ′ − Σ

(i)
N

∥∥∥ ≤ 4

(
C(N (i))

σmin(Q+ Q̄)

)2
‖B‖(‖A−BN (i)‖+ 1)

ξ̄

∥∥∥N (i) −N ′(i)
∥∥∥ . (F.22)

Proof. See Fazel et al. (2018) for a detailed proof.

F.3 Adaptive Choice of Parameters Ω and Γ

In this section, we provide guidance to choose edge associated parameter Ω and agent associated
parameter Γ in MF-DPGM algorithm, in order to meet the conditions of the adaptive area of (F.12)
and (F.14). Let βi := max{βMi , βNi } in Lemma F.2. According to the communication and update
step in Algorithm 1, for M (i)

t we have

‖M (i)
t+1 −M

(i)
t ‖ =

1

2
∑

j:j∼i σ
2
ij + γ2

i

∥∥∥∥ 1

n

(
∇C(M

(i)
t )−∇C(M

(i)
t−1)

)
− 2

∑
j:j∼i

σ2
ijM

(j)
t

+ γ2
i

(
M

(i)
t−1 −M

(i)
t

)
+
∑
j:j∼i

σ2
ij

(
M

(j)
t−1 +M

(i)
t−1

)∥∥∥∥
≤ 1

2
∑

j:j∼i σ
2
ij + γ2

i

(
1

n
‖∇C(M

(i)
t )−∇C(M

(i)
t−1)‖+

∑
j:j∼i

σ2
ij‖M

(j)
t −M

(j)
t−1‖

+
∑
j:j∼i

σ2
ij‖M

(j)
t ‖+ γ2

i ‖M
(i)
t −M

(i)
t−1‖+

∑
j:j∼i

σ2
ij‖M

(i)
t−1‖

)
.

(F.23)
Given the almost smoothness is met by iterates t and t− 1, we proceed with

‖M (i)
t+1 −M

(i)
t ‖

≤ 1

2
∑

j:j∼i σ
2
ij + γ2

i

(
nγ2

i + βi
n

‖M (i)
t −M

(i)
t−1‖+

∑
j:j∼i

σ2
ij‖M

(j)
t −M

(j)
t−1‖

+
∑
j:j∼i

σ2
ij‖M

(j)
t ‖+

∑
j:j∼i

σ2
ij‖M

(i)
t−1‖

)
(F.24)

(b)

≤ 1

2
∑

j:j∼i σ
2
ij + γ2

i

nγ2
i + βi
n

FM (M
(i)
t−1) +

∑
j:j∼i

σ2
ij(‖M

(j)
t ‖+ ‖M i

t−1‖) + FM (M
(j)
t−1)

 .
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Where (b) uses the condition that M (i)
t and M (i)

t−1 have already stayed in the required adaptive area

of (F.12) and FM (X) = min
{

ξσmin(Q)
4(‖A+BX‖+1)‖B‖C(X) , ‖X‖

}
. Therefore, as long as we have

nγ2
i + βi
n

FM (M
(i)
t−1) +

∑
j:j∼i

σ2
ij

(
‖M (i)

t ‖+ ‖M (i)
t−1‖+ FM (M

(j)
t−1)− 2FM (M

(i)
t ))

)
− γ2

i FM (M
(i)
t ) ≤ 0, (F.25)

we can always meet the conditions of almost smoothness in Lemma F.2, leading to establishment of
one-step progress lemmas (F.6, F.7), and finally providing global convergence theorem.

F.4 Proof of Lemma F.2

Now we proceed to prove the gradient domination lemma based on last two almost Lipschitzness
results for cost functions, which is essential to control the one-step progress of MF-DPGM in both
primal and dual variables.

Proof. By (A.8) we can split the left-hand-side of (F.10) into two terms
‖∇C(M̂ (i))−∇C(M (i))‖F = ‖2Ξ

M̂(i)ΣM(i) − 2ΞM(i)ΣM(i)‖F
≤ 2‖ΞM(i)(ΣM̂(i) − ΣM(i))‖+ 2‖(Ξ

M̂(i) − ΞM(i))ΣM̂(i)‖. (F.26)

Let ŷt and ût be the sequence induced by M̂ (i). Note that C(M∗(i)) ≤ C(M̂ (i)). Let VM (y) =
Ewy

>PMy,QM (y, u) = y>Qy+u>Ru+VM ((A+BM)y+ŵ),AM (y, u) = QM (y, u)−VM (y).
By using cost difference lemma Fazel et al. (2018) and Lemma F.4 and F.5 we have

C(M)− C (M∗) ≥ C(M)− C
(
M̂
)

(F.27)

= −E
∑
t

AM (ŷt, ût) (F.28)

= E
∑
t

Tr

(
ŷtŷ
>
t Ξ>M

(
R+B>PMB

)−1
ΞM

)
(F.29)

≥ Tr

(
Σ
M̂

Ξ>M

(
R+B>PMB

)−1
ΞM

)
(F.30)

≥ ξ

‖R+B>PMB‖
Tr
(

Ξ>MΞM

)
. (F.31)

Hence we have the norm bound

‖ΞM‖2F ≤
‖R+B>PMB‖

ξ
(C(M)− C(M∗)) . (F.32)

Then, for the first term in (F.26), we adopt Lemma F.5 to derive the upper bound. For the latter term,
we note that ‖Σ

M̂
‖ ≤ ‖ΣM‖+ C(M)

σmin(Q) due to small norm of M̂ −M . Combining with Lemma F.4

we can obtain the final bound in ‖M̂ −M‖.

Next we turn to formulate the one-step progress of dual variable controlling the consensus error
in the following lemma.
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Lemma F.6 (One-step progress of dual variable). For any k ∈ N, it holds that

‖Λk+1 − Λk‖ ≤ 2κ


∥∥∥Γ−1Φ

(
Θ̃k − Θ̃k−1

)∥∥∥2

n2
+ ‖Vk+1‖2H

 , (F.33)

where

κ :=
1

λmin (ΩFH−1F TΩ)
,

Vk+1 :=
(
Θ̃k+1 − Θ̃k

)
−
(
Θ̃k − Θ̃k−1

)
.

(F.34)

Proof. See Sun and Hong (2018) for a detailed proof.

By this lemma, we are able to transform difference norms of dual variables into primal varibles.
V also keep a second order difference corresponding to the requirement of past gradients and policies
by MF-DPGM. Then, we introduce the progress of augmented Lagrangian, which captures the
dynamics of both primal and dual variables.

Lemma F.7 (One-step progress of augmented Lagrangian function). For all k ≥ 0, the iterates in
MF-DPGM gives

Ak+1 −Ak ≤ −
1

2

∥∥∥Θ̃k+1 − Θ̃k

∥∥∥2

Ω̃+2Γ2−Φ/n

+κ

(
2

n2

∥∥∥Γ−1Φ
(
Θ̃k − Θ̃k−1

)∥∥∥2
+ 2 ‖Vk+1‖2H

)
. (F.35)

Proof. See Sun and Hong (2018) for a detailed proof.

Again the progress bound of augmented Lagrangian is parameterized by primal first-order
differences and second order differences. Converting to such uniform differences is helpful in the
proof of the main theorem.

With all the lemmas above in place, now we are ready to prove the global convergence result of
our novel decentralized MARL algorithm.

F.5 Proof of Theorem 4.2

Proof. Let M ∈ Rnmd be the vectorization of tensor parameter M, 1 be the block all one vector with
block vectors in Rmd. From the update of the algorithm, we have the following optimality condition
that for any k ≥ −1, it holds that

〈1,∇C̃(Mk)〉+ 〈1, H(Mk+1 −Mk)〉 = 0. (F.36)
By taking the square of both sides, we can obtain

‖ 1

n

n∑
i=1

∇C(M
(i)
k )‖2 = |1>H(Mk+1 −Mk)|2. (F.37)

Using Cauchy-Schwarz inequality under metric matrix H , we have
|1>H(Mk+1 −Mk)|2 ≤ ‖Mk+1 −Mk‖2H‖1‖2H

= (Mk+1 −Mk)
>H(Mk+1 −Mk) · 1>H1

(b)

≤

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i

 ‖Mk+1 −Mk‖2H , (F.38)
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when (b) result from the definition of H . Then we combine Lemma E.1, (F.37), and (F.38) to get
1

n

n∑
i=1

‖∇C(M
(i)
k )‖2F = ‖ 1

n

n∑
i=1

∇C(M
(i)
k )‖2

≤ ‖Mk+1 −Mk‖2H

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i


≤ 8

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i

 (Uk − Uk+1), (F.39)

where we also use the fact that H � 2(Ω̃ + Γ2).

For the error caused by constraint violence (inexact consensus), we know from Lemma F.6 and
parameter setting of Γ in Lemma E.1 that

‖ΩL̃Mk+1‖2 ≤ κ
(

2V>k+1HVk+1 +
2

n2
‖Γ−1Φ(Mk+1 −Mk)‖2

)
≤ 4κ

(
1

n2
‖Γ−1Φ(Mk+1 −Mk)‖2 + 2‖Vk+1‖2H

)
. (F.40)

Then, we look one step back and using Jensen’s inequality to bound similar term for step k,

‖ΩL̃Mk‖2 ≤ 2
(
‖ΩL̃Mk+1‖2 + ‖ΩL̃(Mk+1 −Mk)‖2

)
≤ 8κ

(
1

n2
‖Γ−1Φ(Mk+1 −Mk)‖2 + 2‖Vk+1‖2H

)
+ 2‖ΩL̃(Mk+1 −Mk)‖2

= 8κ

(
1

n2
‖Mk+1 −Mk‖2ΦΓ−2Φ + 2‖Vk+1‖2H

)
+ 2‖Mk+1 −Mk‖2L̃Ω2L̃. (F.41)

From the constraints in (4.1), we have

ΦΓ−2Φ � n2

8κ
(Ω̃ + Γ2). (F.42)

Meanwhile, the definition of Ω̃ gives
L̃Ω2L̃ � 2Ω̃. (F.43)

Again using the step improvement in potential function U combined with (F.42) and (F.43), we have
‖ΩL̃Mk‖2 ≤ ‖Mk+1 −Mk‖2Ω̃+Γ2 + 16κ‖Vk+1‖2H + 4‖Mk+1 −Mk‖2Ω̃

≤ 5‖Mk+1 −Mk‖2Ω̃+Γ2 + 16κ‖Vk+1‖2H
≤ 20(Uk − Uk+1). (F.44)
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On the other hand, according to Lemma F.3 and the measure (left hand side of (4.3) ) for convergence
rate, we can derive the following inequality on the cost error,

t ·min
k∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(M
(i)
k )− C(M∗)

∣∣∣∣∣ ≤
t∑

k=1

∣∣∣∣∣ 1n
n∑
i=1

C(M
(i)
k )− C(M∗)

∣∣∣∣∣
≤

t∑
k=1

1

n

(
n∑
i=1

∣∣∣C(M
(i)
k )− C(M∗)

∣∣∣)
(F.11)
≤

t∑
k=1

‖ΣM∗‖
nσmin(Σ)2σmin(R)

n∑
i=1

‖∇C(M
(i)
k )‖2F (F.45)

(F.39)
≤

t∑
k=1

8‖ΣM∗‖(Uk − Uk+1)

σmin(Σ)2σmin(R)

(
4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i

)
.

We note that the summation indexed by k only operates on difference terms of adjacent potential
functions (Uk − Uk+1)’s. Combining the above results with the upper bound and lower bound of the
potential function in Lemma E.1, we have

min
k∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(M
(i)
k )− C(M∗)

∣∣∣∣∣ ≤ 8‖ΣM∗‖(U1 − Ut+1)

tσmin(Σ)2σmin(R)

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i


≤ 8‖ΣM∗‖(U0 − infM C̃(M))

tσmin(Σ)2σmin(R)

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i

 .

(F.46)
Similarly, we can directly derive the consensus error bound in constants and t from (F.44) as follows,

min
k∈[t]
‖ΩL̃Mk‖2 ≤

1

t
·

t∑
k=1

‖ΩL̃Mk‖2

≤ 20

t

t∑
k=1

(Uk − Uk+1)

≤ 20(U0 − Ut+1)

t
(E.3)
≤ 20

t

(
C̃(M0)− inf

M
C̃(M) +

2∇C(0)>Φ−1∇C(0)

n

)
. (F.47)

Therefore, we have attained the cost error and consensus error bound respectively in some problem
coonstants. As the first inequalities of both derivations come from the same argument, we can finally
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obtain the overall convergence rate as

min
s∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(M (i)
s )− C(M∗)

∣∣∣∣∣+ ‖ΩL̃Mk‖2

≤ 8‖ΣM∗‖U0 − infM C̃(M))

σmin(Σ)2σmin(R)

4
∑

(i,j),i∼j

σ2
ij +

n∑
i=1

γ2
i


︸ ︷︷ ︸

cost error bound

+
20

t

(
C̃(M0)− inf

M
C̃(M) +

2∇C(0)>Φ−1∇C(0)

n

)
︸ ︷︷ ︸

consensus error bound

≤ 2C′

t
(5 + 4αgC). (F.48)

Since αg = max{αMg , αNg } and we choose the commonly applied constant when using inequalities
for M and N, we complete the proof for overall variables.

Analysis of model-free policy gradient estimator. Our main analysis is based on the exact
policy gradient ∇C(M), while in practice we adopt an empirical version ∇̂C(M) for updates. As
mentioned in Section 3.1, our proof can be easily tweaked to include the variance incurred by
∇̂C(M). Specifically, the objective on the left-hand side of (F.45) is changed into C(M̂

(i)
k ) where

M̂
(i)
k is the iterate obtained by unbiased estimated policy gradient, which gives

t ·min
k∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(M̂
(i)
k )− C(M∗)

∣∣∣∣∣
≤ t ·min

k∈[t]

∣∣∣∣∣ 1n
n∑
i=1

(
C(M̂

(i)
k )− C(M

(i)
k )
)∣∣∣∣∣+ t ·min

k∈[t]

∣∣∣∣∣ 1n
n∑
i=1

C(M
(i)
k )− C(M∗)

∣∣∣∣∣ , (F.49)

where the first term can be bounded according to the almost Lipschitzness of the cost function by
the ‖M̂ (i)

k −M
(i)
k ‖ = ‖M̂ (i)

k − EM̂ (i)
k ‖ = Π · ‖∇̂C(M

(i)
k )− E∇̂C(M

(i)
k )‖, where Π denotes the

step-size of the policy gradient in Algorithm 1. Such standard variance can be further bounded by
the variance of the REINFORCE estimator in Preiss et al. (2019). On the other hand, the second
term can still be bounded following the proof above. Combining these bounds we obtain the error
bound with estimated policy gradients.

Appendix G. Analysis of Computation and Communication Complexities

In this section, we briefly conclude the storage and computation resources and communication
overhead during running MF-DPGM.

Firstly, for each agent the method requires previously computed gradients from its own and past
simulated states from the neighborhood. Therefore, each agent needs to store two gradient tensors
and two policy tensors to avoid the computational overhead brought by re-evaluating trajactory-based
policy gradients and states, which is more space efficient than another policy evaluation method Wai
et al. (2018). To conclude, the whole system is supposed to store (2nmd+ 2nmd) real numbers at
any iteration. From a view of the update step for each agent, each step inlvolves summation of m× d
matrices by number of neighbors, leading to an O(dimd) computation complexity for agent i. On
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the other hand, according to the information exchanging round in the communication and update
step, MF-DPGM requires O(2e) communications at each round and each exchange delivers md real
numbers. Although the overhead is greatly alleviated compared to centralized scheme, it still cost
much bandwidth when the policy is extremely complicated to parameterize. We are trying to infer
state information from part of the neighborhood to further reduce communication as the future work.

26


	Introduction
	Problem Formulation
	The Approach and Algorithm
	The MF-DPGM Algorithm

	Theoretical Results and Analysis
	Conclusion
	Policy Gradient with Reparametrized States
	A primal-dual view on MF-DPGM
	Simulation and Result Analysis
	Experiment Setup and Additional Details

	Proof Sketch
	Detailed Proof of Main Results
	Main Lemmas for the Geometry of Cost Functions
	Lemmas for Almost-Smoothness of Cost Functions
	Adaptive Choice of Parameters  and 
	Proof of Lemma F.2
	Proof of Theorem 4.2

	Analysis of Computation and Communication Complexities

