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Abstract

Online machine learning systems need to adapt to domain shifts. Meanwhile, acquiring label at
every timestep is expensive. We propose a surprisingly simple algorithm that adaptively balances its
regret and its number of label queries in settings where the data streams are from a mixture of hidden
domains. For online linear regression with oblivious adversaries, we provide a tight tradeoff that
depends on the durations and dimensionalities of the hidden domains. Our algorithm can adaptively
deal with interleaving spans of inputs from different domains. We also generalize our results to
non-linear regression for hypothesis classes with bounded eluder dimension and adaptive adversaries.
Experiments on synthetic and realistic datasets demonstrate that our algorithm achieves lower regret
than uniform queries and greedy queries with equal labeling budget.

Keywords: Active Learning, Online Learning, Bandit Algorithms

1. Introduction

Domain shift, the difference between training and testing distributions, is a major bottleneck for many
machine learning applications (Kouw and Loog, 2018). Online learning is a classical framework to
deal with worst-case domain shift. In online learning, even though the data is assumed to be given
adversarially, strong regret bounds are attainable for many problems. So far, the practical deployments
of fully online learning systems has been somewhat limited, because labels are expensive to obtain.

Cesa-Bianchi et al. (2004b) study label-efficient online learning for prediction with expert advice.
Their algorithm queries the label of every example with a fixed probability, which achieves minimax-
optimal regret and query complexity for this problem. However, querying with uniform probability
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does not take into account the algorithm’s uncertainty in each individual example, and thus can be
suboptimal when the problem has certain favorable structures.

We aim to improve label-efficiency in online learning by exploiting hidden domain structures in
the data. We assume that each input is from one of m potentially overlapping domains. For each
input, the learner makes a prediction, incurs a loss, and decides whether to query its label. The regret
of the learner is defined as the difference between its cumulative loss and that of the best predictor
in hindsight. We assume realizability, i.e., there exists a predictor that is Bayes optimal across all
the domains. This is a reasonable assumption in modern machine learning, since features can be
high-dimensional (so that different domain may rely on different features), and models are often
overparameterized (Zhang et al., 2016). Our goal is to balance regret and query complexity: given a
fixed labeling budget, we hope to achieve a regret as low as possible.

We propose QuFUR (Query in the Face of Uncertainty for Regression), a surprisingly simple
query scheme based on uncertainty quantification. We start with online linear regression from Rd to
R with an oblivious adversary. In the realizable setting, with additional regularity conditions, we
provide the following regret guarantee for QuFUR with label budget B: for any partition of [T ] into
domains, I1, . . . , Im, if for every u in [m], the u-th domain Su = {xt : t ∈ Iu} has length Tu and
lies in a du-dimensional subspace of Rd, the regret is Õ((

∑m
u=1

√
duTu)2/B) (Theorem 2). 1

When choosing m = 1 and I1 = [T ], we see that the regret of QuFUR is at most Õ(dT/B),
which also matches minimax lower bounds (Theorem 19) in this setting. The advantage of QuFUR’s
adaptive regret guarantees becomes significant when the domains have heterogeneous time spans and
dimensions. Using standard online-to-batch conversion (Cesa-Bianchi et al., 2004a), we also obtain
novel results in batch active learning for regression (Theorem 24). Furthermore, we also define a
stronger notion of minimax optimality, namely hidden domain minimax optimality, and show that
QuFUR is optimal in this sense (Theorem 3), for a wide range of domain structure specifications.

We generalize our results to online regression with general hypothesis classes against an adaptive
adversary. We obtain a similar regret-query complexity tradeoff, where the analogue of du is (roughly)
the eluder dimension (Russo and Van Roy, 2013) of the hypotheses class with respect to the support
of domain u (Theorem 6).

Experimentally, our algorithm outperforms the baselines of uniform and greedy query strategies,
in a synthetic experiment and two LIBSVM datasets (Chang and Lin, 2011).

2. Setup and Preliminaries

2.1 Setup

Let F = {f : X → [−1, 1]} be a hypotheses class. We consider the realizable setting where
yt = f∗(xt) + ξt for some f∗ ∈ F and random noise ξt. The adversary decides f∗ ∈ F before
interaction starts. ξt’s are independent zero-mean, sub-Gaussian random variables with variance
proxy η2. The learner is given a label budget B. For each t = 1, . . . , T :
1. xt is revealed to the learner.
2. The learned predicts ŷt = f̂t(xt) using predictor f̂t ∈ F , incurring loss (ŷt − yt)2.
3. The learner sets a query indicator qt ∈ {0, 1}. If qt = 1, yt is revealed.

The performance of the learner is measured by its query complexity Q =
∑T

t=1 qt and regret
R =

∑T
t=1 (ŷt − f∗(xt))2. By our realizability assumption, our notion of regret coincides with the

1. [n] := {1, . . . , n}; Õ and Ω̃ hide logarithmic factors.
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one usually used in online learning when taking expectations; see Appendix C. Our goal is to design
a learner that has low R subject to budget constraint Q ≤ B.

In the oblivious setting, the adversary decides the sequence {xt}Tt=1 beforehand. In the adaptive
setting, the adversary can choose xt depending on {x1:t−1, f1:t−1, ξ1:t−1}.

Some additional notations: For v ∈ Rd and PSD matrix M ∈ Rd×d, ‖v‖M :=
√
v>Mv.

For {zt}Tt=1 ⊆ Rl, and S = {i1, . . . , in} ⊆ [T ], denote by ZS the n × l matrix whose rows are
z>i1 , . . . , z

>
in

. Define clip(z) := min(1,max(−1, z)) and η̃ := max{1, η}.

2.2 Baselines

We first study linear regression with oblivious adversary, where F = {〈x, θ〉 : θ ∈ Rd, ‖θ‖2 ≤ C}.
Let the ground truth hypothesis be θ∗, and input space X ⊆ {x ∈ Rd : ‖x‖2 ≤ 1, 〈x, θ∗〉 ≤ 1}.

Uniform query is minimax-optimal with no domain structure As a baseline, consider the
algorithm that always queries and returns the regularized least squared estimator. It is known Vovk
(1990); Azoury and Warmuth (2001) that this fully-supervised algorithm achieves R = Õ(η̃2d) with
Q = T . Consider an active learning extension of the above algorithm that queries uniformly randomly
with probability µ, and always predicts with the regularized least squared estimator computed on
all queried examples. We show that the uniform querying strategy achieves R = Õ(η̃2dT/B) with
Q = Õ(B) = Õ(µT ). As shown in Theorem 19, this tradeoff is minimax optimal if η̃ is a constant.
Although this guarantee is optimal in the worst case, when the data has some hidden domain structure,
it is possible to achieve better regret guarantees, if the learner has access to domain information.

Oracle baseline when domain structure is known Suppose the learner knows: there are m do-
mains; for each u in [m], there are a total of Tu examples from domain u from a subspace of Rd dimen-
sion du. In addition, for every t, the learner is given the index of the domain example xt comes from.
Then, for any example in domain u, the learner can query its label independently with probability
µu ∈ (0, 1]. Within domain u, the learner incursO(µuTu) queries and Õ(η̃2du/µu) regret. Summing
over domains, its achieves a label complexity ofO(

∑m
u=1 µuTu), and a regret of Õ(η̃2

∑m
u=1 du/µu).

This motivates the following optimization problem: minµ
∑m

u=1 du/µu, s.t.
∑m

u=1 µuTu ≤ B,µu ∈
[0, 1], ∀u ∈ [m], i.e., we choose domain-dependent query probabilities that minimize the learner’s
regret guarantee, subject to its query complexity being at most B. When B ≤

∑m
u=1

√
duTu ·

minu
√
Tu/du, the optimal µu is proportional to

√
du/Tu. This yields a regret guarantee of

O(η̃2(
∑

u

√
duTu)2/B). Although this strategy may achieve much smaller regret than uniform

query (as (
∑

u

√
duTu)2 can be substantially smaller than dT ), it still has two crucial drawbacks:

first, it is not clear if this guarantee is always no worse than uniform querying, especially when∑m
u=1 du � d; second, the domain membership of each example is rarely known in practice. We

develop algorithms that overcome these drawbacks.

3. Active online linear regression: algorithms, analysis, and matching lower bounds

3.1 Main Algorithm: Query in the Face of Uncertainty for Regression (QuFUR)

We propose QuFUR (Query in the Face of Uncertainty for Regression), namely Algorithm 1. At each
time step t, the algorithm first computes θ̂t, a regularized empirical risk minimizer on the labeled
data obtained so far, then predict using f̂t(x) = clip(〈θ̂t, x〉). It makes label queries with probability
proportional to a high-confidence upper bound of the instantaneous regret (ŷt − 〈θ∗, xt〉)2, which
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Algorithm 1 Query in the Face of Uncertainty for Regression (QuFUR(α))

Require: Total dimension d, time horizon T , θ∗’s norm bound C, noise level η, parameter α.
1: M ← 1

C2 I , queried dataset Q ← ∅.
2: for t = 1 to T do
3: Compute θ̂t ←M−1X>QYQ.
4: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t, and predict ŷt ← f̂t(xt).
5: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
6: With probability min {1, α∆t}, set qt ← 1.
7: if qt = 1 then
8: Query yt. M ←M + xtx

>
t , Q ← Q

⋃
{t}.

can also be interpreted as the uncertainty on xt. Intuitively, when the algorithm is already confident
about the current prediction, it will save budget for less certain inputs in the future.

QuFUR measures the uncertainty of xt using ∆t := η̃2 min{1, ‖xt‖2M−1
t

}, where Mt = λI +∑
i∈Qt xix

>
i , and Qt is the set of labeled examples seen up to time step t − 1. We will show in

Lemma 7 that with high probability, the squared loss on xt is at most Õ(∆t). QuFUR queries yt
with probability min {1, α∆t} where α is a parameter that tradeoffs query complexity and regret.

Perhaps surprisingly, the simple query strategy of QuFUR can leverage hidden domain structure:

Theorem 1 Suppose the example sequence {xt}Tt=1 has the following structure: [T ] can be parti-
tioned into m disjoint nonempty subsets

{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and {xt}t∈Iu

lie in a subspace of dimension du. Suppose α ∈

[
1
η̃2

(
1∑

u

√
duTu

)2

, 1
η̃2

minu∈[m]
Tu
du

]
. If Algo-

rithm 1 receives inputs dimension d, time horizon T , norm bound C, noise level η, parameter α, then,
with probability 1− δ:
1. Its query complexity Q = Õ(η̃ ·

√
α
∑

u

√
duTu).

2. Its regret R = Õ(η̃ ·
∑

u

√
duTu/

√
α).

The proof is deferred to Section A.1. A few remarks:

Novel notion of adaptive regret The above tradeoff is novel; it holds for any meaningful domain
partition. Our proof actually shows that for any (not necessarily contiguous) subsequence I ⊆ [T ],
QuFUR hasQ = Õ(η̃ ·

√
dI |I| ·

√
α) andR = Õ(η̃

√
dI |I|)/

√
α within I , where dI is the dimension

of span({xt : t ∈ I}). This type of guarantee is stronger than the adaptive regret guarantees provided
by e.g. Hazan and Seshadhri (2007), where the regret guarantee only holds for continguous intervals.

Matching uniform query baseline and minimax optimality Our tradeoff is never worse than the
uniform querying baseline; this can be seen by applying the theorem with the trivial partition {[T ]}
yields Q = Õ(η̃

√
αdT ) and R = Õ(η̃

√
dT/α). Therefore, same as the uniform query baseline, this

guarantee is also minimax optimal for constant η, in light of Theorem 19 in Appendix A.6.

Matching oracle baseline. QuFUR matches the domain-aware baseline even without prior knowl-
edge of domain structure. Theorem 3 says that both are optimal in our problem formulation (within a
range of problem specifications).
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Fixed-cost-ratio interpretation. Suppose a practitioner decides that the cost ratio between 1 unit
of loss and 1 label query is c : 1. The performance of the algorithm is then measured by its total cost
cR+Q. Theorem 1 shows that QuFUR(α) balances Q ≈ αR. We show in Appendix B that QuFUR
with input α = c achieves near-optimal total cost, for a wide range of domain structure parameters.

3.2 QuFUR with a fixed label budget

The bounds in Theorem 1 involve parameters {du, Tu}mu=1, which may be unknown in advance.
In many practical settings, the learner is given a label budget B. For such settings, we propose a
fixed-budget version of QuFUR, Algorithm 2, that takes B as input, and achieves near-optimal regret
bound subject to the budget constraint, under a wide range of domain structure specifications.

Algorithm 2 in A.2 is a master algorithm that aggregates over k = O(log T ) copies of QuFUR(α).
Each copy uses a different value of α lying in an exponentially increasing grid {2i/T 2 : i = 0, . . . , k}.
The grid ensures that each copy still has label budget B/k = Ω̃(B), and there is always a copy that
takes full advantage of its budget to achieve low regret. The algorithm queries whenever one of the
copies issues a query, and predicts using a model learned on all historical labeled data. A copy can no
longer query when its budget is exhausted. The regret of the master algorithm is no worse that of the
copy running on a parameter αi that make Θ̃(B) queries; this insight yields the following theorem.

Theorem 2 Suppose the example sequence {xt}Tt=1 has the following structure: [T ] can be parti-
tioned into m disjoint nonempty subsets

{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and {xt}t∈Iu

lie in a subspace of dimension du. Moreover, B satisfies B ≤ Õ(
∑

u

√
duTu minu∈[m]

√
Tu/du).

If Algorithm 2 receives inputs dimension d, time horizon T , label budget B, norm bound C, noise
level η, then, with probability 1− δ:
1. Its query complexity Q is at most B.
2. Its regret R = Õ(η̃2(

∑
u

√
duTu)2/B).

The proof of the theorem is deferred to Appendix A.2. We compare this theorem with the guar-
antees of the oracle baseline in Section 2.2: for any budget B ∈ [0, Õ(

∑
u

√
duTu minu

√
Tu/du)],

Fixed-Budget QuFUR achieves a regret guarantee no worse than that of domain-aware uniform
sampling, while being agnostic to {du, Tu}mu=1 and the domain memberships of the examples.

3.3 Lower bound

We showed domain structure-aware regret upper bounds of the form R = Õ(η̃2(
∑

u

√
duTu)2/B),

achieved by Fixed-Budget QuFUR and domain-aware uniform sampling baseline (the latter requires
extra knowledge about the domain structure and domain membership of each example). In this
section, we show via Theorem 3 that they are tight up to constants, for a wide range of domain
structure specifications. Its proof can be found in Appendix A.3.

Theorem 3 For a set of positive integers
{

(du, Tu)
}m
u=1

and B such that du ≤ Tu, ∀u ∈ [m],∑m
u=1 du ≤ d,B ≥

∑m
u=1

√
duTu/

√
minu∈[m] Tu/du, there is an oblivious adversary such that:

1. It uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; the
noises {ξt}Tt=1 are sub-Gaussian with variance proxy η2 for any η ≥ 1.
2. It shows examples in m domains, where domain u has dimension du and time span Tu.
3. Any online active learning algorithm A with label budget B has regret Ω((

∑m
u=1

√
duTu)2/B).
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The above theorem refines the Ω(dT/B) minimax lower bound (Theorem 19 in Appendix A.6);
it further constrains the adversary to present sequences of examples with domain structure specified
by {du, Tu}mu=1. Theorem 3 subsumes the Ω(dT/B) lower bound by taking m = 1, d1 = d, T1 = T .

Combining Theorems 2 and 3, if 1 ≤ η ≤ O(1), for a wide range of {du, Tu}mu=1 and budgets
B (i.e., B/(

∑
u

√
duTu) ∈ [

√
maxu du/Tu,

√
minu Tu/du]), the regret guarantee of Fixed-Budget

QuFUR is optimal; furthermore, the algorithm requires no knowlege on the domain structure. We
call this property of Fixed-Budget QuFUR its hidden-domain minimax optimality.

4. Extension to realizable non-linear regression with adaptive adversary

We generalize our algorithm to non-linear regression with adaptive adversaries, extending Russo and
Van Roy (2013).

Domain complexity measure Analogous to the dimension of the support in linear regression, we
use d′u = dimE

u (F , 1/T 2
u ), the eluder dimension of F with respect to domain u ∈ [m] with support

Xu ⊆ X . Formally,

Definition 4 An input x ∈ X is ε-dependent of on another set of inputs {xi}ni=1 ⊆ X with respect
to F if for all f1, f2 ∈ F ,

√∑n
i=1 (f1(xi)− f2(xi))2 ≤ ε =⇒ f1(x)− f2(x) ≤ ε.

Definition 5 The ε-eluder dimension of F with respect to support Xu, dimE
u (F , ε), is defined as

the length of the longest sequence of elements in Xu such that for some ε′ > ε, every element is
ε′-independent of of its predecessors.

The above domain-dependent eluder dimension notion captures how effective the potential value
of acquiring a new label can be estimated from labeled examples in domain u.

The Algorithm The master algorithm, Algorithm 4 in Appendix A.4, runs O(log T ) copies of
Algorithm 3. Algorithm 3 queries with probability min {1, α∆t}. At round t, Algorithm 3 predicts
using the empirical risk minimizer f̂t on all queried examples. It constructs a confidence set Ft, so
that with high probability, the ground truth f∗ ∈ Ft for all t. The loss upper bound ∆t is the squared
maximum disagreement between two hypotheses in Ft on xt. Therefore, with high probability, its
regret and query complexity are bounded by O(

∑T
t=1 ∆t) and O(

∑T
t=1 min {1, α∆t}), respectively.

We bound the regret on domain uwithRu = Õ(η̃2d′u logN (F , T−2, ‖ · ‖∞)), whereN (F , ε, ‖·
‖∞) is the ε-covering number of F with respect to ‖ · ‖∞. We have the following theorem (proof is
in Section A.4).

Theorem 6 Suppose the example sequence {xt}Tt=1 has the following structure: [T ] can be parti-
tioned into m disjoint nonempty subsets

{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and {xt}t∈Iu

all lie in Xu. Given budget B ≤ Õ(
∑

u

√
RuTu minu

√
Ru/Tu), Algorithm 4 satisfies: (1) Q ≤ B;

(2) with probability 1− δ, R = Õ((
∑

u

√
RuTu)2/B).

5. Experiments

We test the query-regret tradeoffs of QuFUR, uniform queries (Section 2.2), and greedy queries (i.e.,
always querying until budget is exhausted) on a synthetic dataset, and LIBSVM datasets cpu-small
and Abalone (Chang and Lin, 2011). QuFUR achieves the lowest total regret under the same labeling
budget. See Appendix E for more details.
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Appendix A. Missing proofs

A.1 Proof of Theorem 1

We provide the proof of Theorem 1 in this section. We focus on regret and query complexity bounds
on one domain Iu, and sum over domain u to obtain Theorem 1. First some notations. Let the
interaction history between the learner and the environment up to time t be Ht and Et−1[·] :=
E[·|xt, Ht−1].

The following lemma upper bounds the regret in a subdomain with sum of uncertainty estimates
∆t = η̃2 min

{
1, ‖xt‖M−1

t

}
.

Lemma 7 In the setting of Theorem 1, Fix I ⊆ [T ]. Then with probability 1 − |I|δ2T , the regret in
I ⊆ [T ] is upper bounded by

∑
t∈I(ŷt − 〈θ∗, xt〉)2 = Õ(

∑
t∈I ∆t).

Proof [Proof of Lemma 7]
Denote the value ofM,Q at the beginning of round t asMt,Qt. Let λ = 1/C2, Vt = Mt−λI =∑
s∈Qt xsx

>
s . Therefore, θ̂t = M−1t (

∑
s∈Qt xsys) = M−1t (Vtθ

∗ +
∑

s∈Qt ξsxs), and

〈xt, θ̂t − θ∗〉 =
∑
s∈Qt

ξs(x
>
t M

−1
t xs)− λx>t M−1t θ∗. (1)

The first term is a sum over a set of independent sub-Gaussian random variables, so it is (ησ)2-sub-
Gaussian with σ2 =

∑
s∈Qt x

>
t M

−1
t xsx

>
s M

−1
t xt ≤ x>t M−1t xt. Define event

Et =


∣∣∣∣∣∣
∑
s∈Qt

ξs(x
>
t M

−1
t xs)

∣∣∣∣∣∣ ≤ η√ln (2T/δ)‖xt‖M−1
t

 .

By concentration of subgaussian random variables, we have P(Et) ≥ 1− δ
2T . Define EI = ∩t∈IEt.

By union bound, we have P(EI) ≥ 1− δ|I|
2T . We henceforth condition on E happening, in which case

the first term of Equation (1) is bounded by η
√

ln (2T/δ)‖xt‖M−1
t

at every time step t.
Meanwhile, the second term of Equation (1) can be bounded by Cauchy-Schwarz:∣∣∣λx>t M−1t θ∗

∣∣∣ = λ
∣∣∣〈M−1/2t xt,M

−1/2
t θ∗〉

∣∣∣ ≤ λ‖xt‖M−1
t
‖θ∗‖M−1

t
≤
√
λ‖θ∗‖2‖xt‖M−1

t
,

which is at most ‖xt‖M−1
t

, since ‖θ∗‖2 ≤ C and λ = 1/C2. Using the basic fact that (A+B)2 ≤
2A2 + 2B2,

(〈xt, θ̂t〉 − 〈xt, θ∗〉)2 ≤ (2η2 ln (TI/δ
′) + 2)‖xt‖2M−1

t
.

Since ŷt = clip(〈xt, θ̂t〉) and
∣∣〈xt, θ∗〉∣∣ ≤ 1,

(ŷt − 〈θ∗, xt〉)2 ≤ min
{

4, (2η2 ln (TI/δ
′) + 2)‖xt‖2M−1

t

}
≤ (2η2 ln (2T/δ′) + 4) ·min

{
1, ‖xt‖2M−1

t

}
≤ Õ(η̃2 min

{
1, ‖xt‖2M−1

t

}
) = Õ(∆t).

7
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Therefore, on event E, we have
∑

t∈I(ŷt − 〈θ∗, xt〉)2 = Õ(
∑

t∈I ∆t).

The following lemma bounds the sum of uncertainty estimates for k queried examples in a
domain:

Lemma 8 Let a1, . . . , ak be k vectors in Rd. For i ∈ [k], define Ni = λI +
∑i−1

j=1 aja
>
j . Then, for

any S ⊆ [k],
∑

i∈S min

{
1, ‖ai‖2N−1

i

}
≤ ln(det(λI +

∑
i∈S aia

>
i )/det(λI)).

Proof [Proof of Lemma 8] We denote by Ni,S = λI +
∑

j∈S:j≤i−1 aja
>
j . As S is a subset of [k],

we have that Ni,S � Ni. Consequently, ‖ai‖N−1
i
≤ ‖ai‖N−1

i,S
. Therefore,

∑
i∈S

min

{
1, ‖ai‖2N−1

i

}
≤
∑
i∈S

min

{
1, ‖ai‖2N−1

i,S

}
≤ ln

det(λI +
∑

i∈S aia
>
i )

det(λI)
,

where the second inequality follows from e.g. Lemma 19.4 of Lattimore and Szepesvári (2018).

Proof [Proof of Theorem 1] Let pt = min(1, α∆t) be the learner’s query probability at time t; it is
easy to see that Et−1qt = pt.

Let random variable Zt = qt∆t. We have the following simple facts:

1. Zt ≤ η̃2,

2. Et−1Zt = pt∆t,

3. Et−1Z2
t ≤ η̃2 · Et−1Zt ≤ η̃2pt∆t.

For u ∈ [m], define event

Fu =


∣∣∣∣∣∣
∑
t∈Iu

pt∆t −
∑
t∈Iu

qt∆t

∣∣∣∣∣∣ ≤ O
η̃√∑

t∈Iu

pt∆t ln
T

δ′
+ η̃2 ln

T

δ′


 . (2)

Applying Freedman’s inequality to {Zt}t∈Iu , we have that P(Fu) ≥ 1− δ
4m .

Similarly, define

Gu =


∣∣∣∣∣∣
T∑
t=1

pt −
T∑
t=1

qt

∣∣∣∣∣∣ ≤ O

√√√√ T∑

t=1

pt ln
T

δ′
+ ln

T

δ′


 . (3)

Applying Freedman’s inequality to {qt}t∈Iu , we have that P(Gu) ≥ 1− δ
4m .

Furthermore, define H = ∩mu=1(EIu ∩ Fu ∩Gu)), where EIu is the event defined in the proof of
Lemma 7 on subset Iu. By union bound, P(H) ≥ 1− δ. We henceforth condition on H happening.

By the definition of Fu, Solving for
∑

t∈Iu pt∆t in Equation (2), we get that

∑
t∈Iu

pt∆t = Õ

∑
t∈Iu

qt∆t + η̃2

 . (4)

8
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Using Lemma 8 with {ai}ki=1 = QT , and S = Iu ∩QT , we get that

∑
t∈Iu

qt∆t ≤ η̃2 · ln det

I + C2
∑

t∈Iu∩QT

xtx
>
t


≤ 2η̃2du ln

(
1 + C2Tu/du

)
= Õ(η̃2du).

In combination with Equation 4, we have
∑

t∈Iu pt∆t = Õ(η̃2du).
We divide the examples in domain u into high vs. low risk subsets Iu,+ and Iu,− (abbrev. I+ and

I−). Formally,
I+ = {t ∈ Iu, α∆t > 1}, I− = I − I+.

1. For every t in I+, as pt = 1, label yt is queried, so∑
t∈I+

∆t =
∑
t∈I+

qt∆t ≤
∑
t∈Iu

qt∆t = Õ(η̃2du).

Since for every t in I−, ∆t > 1/α, we have
∑

t∈I+ ∆t > |I+|/α. This implies that∑
t∈I+ pt = |I+| = Õ(αη̃2du).

2. In I−,
∑

t∈I− α∆2
t =

∑
t∈I− pt∆t ≤

∑
t∈Iu pt∆t = Õ(η̃2du). By Cauchy-Schwarz, and the

fact that|I−| ≤ Tu, this implies
∑

t∈I− ∆t = Õ(η̃
√
duTu/α).

Therefore,
∑

t∈I− pt =
∑

t∈I− α∆t ≤ Õ(η̃
√
αduTu).

Summing over the two cases, we have∑
t∈Iu

pt ≤ Õ(αη̃2du + η̃
√
αduTu),

∑
t∈Iu

∆t ≤ Õ(η̃2du + η̃
√
duTu/α),

If α ≤ 1
η̃2

minu
Tu
du

, for every u, we have, αη̃2du ≤ η̃
√
αduTu. This implies that∑

t∈Iu

pt ≤ Õ(η̃
√
αduTu),

∑
t∈Iu

∆t ≤ Õ(η̃
√
duTu/α).

For the query complexity, from the definition of event Gt, applying AM-GM inequality on
Equation (3), we also have

T∑
t=1

qt = Õ

 T∑
t=1

pt + 1

 = Õ

η̃ m∑
u=1

√
αduTu + 1

 = Õ

η̃ m∑
u=1

√
αduTu

 .

where in the last equality we use the assumption that α ≥ η̃2 1
(
∑
u

√
duTu)2

.

For the regret guarantee, for every u ∈ [m], Lemma 7 with I = Iu implies that

∑
t∈Iu

(ŷt − 〈θ∗, xt〉)2 = Õ

∑
t∈Iu

∆t

 = Õ(η̃
√
duTu/α).

9
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Algorithm 2 Fixed-Budget QuFUR

Require: Total dimension d, time horizon T , label budget B, θ∗’s norm bound C, noise level η.
1: Number of copies k ← 4dlog2 T e.
2: for i = 0 to k do
3: Parameter αi ← 2i/T 2.
4: Initialize M ← 1

C2 I , Q ← ∅.
5: for t = 1 to T do
6: Compute regularized least squares solution θ̂t ←M−1X>QYQ.
7: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t, and predict ŷt ← f̂t(xt).
8: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
9: for i = 0 to k do

10: if
∑t−1

j=1 q
i
j < bB/kc then

11: With probability min {1, αi∆t}, set qit = 1.
12: if

∑
i q
i
t > 0 then

13: Query yt. M ←M + xtx
>
t , Q ← Q

⋃
{t}.

Summing over all u ∈ [m], we get

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 ≤ Õ(η̃
m∑
u=1

√
duTu/α).

The theorem follows.

A.2 Proof of Theorem 2

Before going into the proof, we set up some useful notations. Define I =
{

0, 1, . . . , dlog T e
}

as
the index set of the sub-algorithms. Recall the number of copies k = 1 + d4 log T e ≤ 2 + 4 log T .
Recall also that B′ = B/k is the label budget for each copy.

Let pit = min(1, αi∆t) be the intended query probability of copy i at time step t; rit ∼
Bernoulli(pit) be the attempted query decision of copy i at time step t; Ait = 1

[∑t−1
j=1 r

i
j < B′

]
, i.e.

the indicator that copy i has not reached its budget limit at time step t. Using this notation, the actual
query decision of copy i, qit, can be written as ritA

i
t.

We have the following useful observation that gives a sufficient condition for copy i to be within
its label budget:

Lemma 9 Given i ∈ [k], if
∑T

t=1A
i
tr
i
t < B′, the following items hold:

1.
∑T

t=1 r
i
t < B′.

2. For all t ∈ [T ], Ait = 1, i.e. copy i does not run of label budget throughout.

10
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Proof Suppose for the sake of contradiction that
∑T

t=1 r
i
t ≥ B′. Consider the first B′ occurrences

of rij = 1; call them J = {j1, . . . , jB′}. It can be seen that for all j ∈ J , Aij = 1.

T∑
t=1

Aitr
i
t ≥

∑
j∈J

Aijr
i
j ≥|J | = B′,

which contradicts with the premise that
∑T

t=1A
i
tr
i
t < B′.

The second item immediately follows from the first one, as
∑T

j=1 r
i
j < B′ implies that∑t−1

j=1 r
i
j < B′ for every t ∈ [T ].

Complementary to the above lemma, we can also see that for every i ∈ [k],
∑T

t=1A
i
tr
i
t =∑T

t=1 q
i
t ≤ B′ is trivially true. We next give a key lemma that upper bounds

∑T
t=1A

i
tr
i
t for all i’s

beyond the above trivial B′ bound.

Lemma 10 There exists a constant C = polylog(T, 1δ ), such that with probability 1− δ,

T∑
t=1

Ait∆t ≤ C · η̃
∑
u

√
duTu/

√
αi, and

T∑
t=1

Aitr
i
t ≤ C · η̃

√
αi
∑
u

√
duTu,

for every i ∈ {} such that αi ∈

[
1
η̃2

(
1∑

u

√
duTu

)2

, 1
η̃2

minu∈[m]
Tu
du

]
.

Proof Applying Freedman’s inequality to the martingale difference sequence {Ait(rit − pit)}Tt=1, we
get that with probability 1− δ/4,

T∑
t=1

Aitr
i
t = Õ

 T∑
t=1

Aitp
i
t + 1

 . (5)

Applying Freedman’s inequality to {Ait(rit − pit)∆t1[t ∈ Iu]}Tt=1, and take a union bound over
all u ∈ [m], we get that with probability 1− δ′,

∑
t∈Iu

Aitp
i
t∆t = Õ

∑
t∈Iu

Aitr
i
t∆t + η̃2

 .

Using Lemma 8 we get that, deterministically,
∑

t∈Iu A
i
tr
i
t∆t ≤

∑
t∈Iu qt∆t = Õ(η̃2du). So with

probability 1− δ′, ∑
t∈Iu

Aitp
i
t∆t = Õ(η̃2dI). (6)

Let I+ = {j ∈ Iu, αi∆j > 1}, and I− = Iu − I+.

1. In I+, by Equation (6),
∑

j∈I+ A
i
j∆j = Õ(η̃2du) =⇒

∑
j∈I+ A

i
jp
i
j = Õ(αiη̃

2du).

11
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2. In I−, by Equation (6), with probability 1 − δ′,
∑

j∈I− A
i
jαi∆

2
j =

∑
j∈I− A

i
jpj∆j =

Õ(η̃2du); this implies
∑

j∈I− A
i
j∆j = Õ(η̃

√
duTu/αi). If this event happens, we also

have
∑

j∈I− A
i
jp
i
j =

∑
j∈I− A

i
jαi∆j = Õ(η̃

√
duTuαi).

Summing over the two cases, we have∑
t∈Iu

Aitp
i
t ≤ Õ(αη̃2du + η̃

√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃2du + η̃
√
duTu/αi),

If αi ≤ 1
η̃2

minu
Tu
du

, for every u, we have, αiη̃2du ≤ η̃
√
αduTu. This implies that∑

t∈Iu

Aitp
i
t ≤ Õ(η̃

√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃
√
duTu/αi).

Therefore, using Equation (5), we have

∑
t∈Iu

Aitq
i
t ≤ Õ

 T∑
t=1

Aitp
i
t + 1

 ≤ Õ(η̃
√
αiduTu + 1) ≤ Õ(η̃

√
αiduTu),

where the last inequality uses the assumption that αi ≥ 1
η̃2

(
1∑

u

√
duTu

)2

. The lemma follows.

We are now ready to prove Theorem 2.
Proof [Proof of Theorem 2] First, the query complexity of Fixed-Budget QuFUR is B by construc-
tion, as there are k copies running, and each copy consumes at most B′ labels.

We now bound the regret of Fixed-Budget QuFUR. If B ≤ 1, the regret of the algorithm is
trivially upper bounded by 4T , which is O((

∑m
u=1

√
duTu)2/B).

Thus throughout the rest of the proof, we consider B ∈ [1, Õ(
∑

u

√
duTu minu∈[m]

√
Tu/du)].

Denote by

iB = max

i ∈ I : Cη̃
√
αi

m∑
u=1

√
duTu < B′

 .

By the construction of iB , and the assumption that B ∈ [1,
∑

u

√
duTu minu∈[m]

√
Tu/du], we have

B′

2
≤ Cη̃√αiB

m∑
u=1

√
duTu ≤ B′.

This implies that,

αiB ∈

( B′

2Cη̃
∑

u

√
duTu

)2

,

(
B′

Cη̃
∑

u

√
duTu

)2
 . (7)

12
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Again by our assumption on B, we deduce that

αiB ∈

 1

η̃2

(
1∑

u

√
duTu

)2

,
1

η̃2
min
u∈[m]

Tu
du

 .
Therefore, the premises of Lemma 10 is satisfied for i = iB; this gives that with probability 1− δ:

T∑
t=1

AiBt ∆t ≤ C · η̃
∑
u

√
duTu/

√
αiB , (8)

and
T∑
t=1

Aitr
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu. (9)

Now from Equation (9) and the definition of iB , we have

T∑
t=1

Aitr
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu < B.

From Lemma 9, we know that for all t in [T ], AiBt = 1. Plugging this back to Equation (8), we have

T∑
t=1

∆t =

T∑
t=1

AiBt ∆t

≤C · η̃
∑
u

√
duTu/

√
αiB

≤Õ

(
(
∑

u

√
duTu)2

B

)
.

where the second inequality is from the lower bound of αiB in Equation (7).
Combining the above observation with Lemma 7 on I = [T ] gives that

R =
T∑
t=1

(ŷt − 〈θ∗, xt〉)2 = Õ(
T∑
t=1

∆t) = Õ

(
(
∑

u

√
duTu)2

B

)
.

A.3 Proof of Theorem 3

Proof For u ∈ [m] and i ∈ [du], define cu,i = e∑u−1
v=1 dv+i

, where ej denotes the j-th standard basis

of Rd. It can be easily seen that all cu,i’s are orthonormal. In addition, for a vector θ ∈ Rd, denote
by θu,i = θ∑u−1

v=1 dv+i
.

For task u, we construct domainXu = span(cu,i : i ∈ [du]). The sequence of examples shown by
the adversary is the following: it is divided to m blocks, where the u-th block occupies a time interval

13
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Iu = [
∑u−1

v=1 Tv+1,
∑u

v=1 Tv]; Each block is further divided to du subblocks, where for i ∈ [du−1],
subblock (u, i) spans time interval Iu,i = [

∑u−1
v=1 Tv + (i− 1)bTu/duc+ 1,

∑u−1
v=1 Tv + ibTu/duc],

and subblock (u, du) spans time interval Iu,du = [
∑u−1

v=1 Tv + (du− 1)bTu/duc+ 1,
∑u−1

v=1 Tv +Tu].
At block u, examples from task u are shown; specifically, for every t in Iu,i, i.e. in the (u, i)-th
subblock, example cu,i is repeatedly shown to the learner.

We first choose θ∗ from distribution Dθ, such that for every coordinate j ∈ [d], θ∗i ∼ Beta(1, 1).
Given θ∗, the adversary reveals labels using the following mechanism: given xt, it draws yt ∼
Bernoulli(〈θ∗, xt〉) independently and optionally reveals it to the learner upon learner’s query.
Specifically, given θ∗, if t ∈ Iu,i, yt ∼ Bernoulli(θ∗u,i). Denote by Nu,i(t) =

∑
s∈Iu,i:s≤t qs the

number of label queries of the learner in domain (u, i) up to time t. Because the learner satisfies a
budget constraint of B under all environments, we have

E

 m∑
u=1

du∑
i=1

Nu,i(T ) | θ∗
 ≤ B.

Adding 2
∑m

u=1 du on both sides and by linearity of expectation, we get

m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) + 2) | θ∗

]
≤ B + 2

m∑
u=1

du ≤ 3B. (10)

On the other hand, we observe that the expected regret of the algorithm can be written as follows:

Reg(T ) = E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷt − θ∗u,i)2
 ,

where the expectation is with respect to both the choice of θ∗ and the random choices of A.
We define a filtration {Ft}Tt=1, where Ft is the σ-algebra generated by

{
(xs, qs, ysqs)

}t
s=1

,
which encodes the informative available to the learner up to time step t.1 We note that ŷt is Ft−1-
measurable. Denote by N+

u,i(t) =
∑

s∈Iu,i:s≤t qs · 1 (ys = 1), which is the number of 1 labels seen
on example cu,i by the learner up to round t− 1. Observe that both N+

u,i(t− 1) and Nu,i(t− 1) are
Ft−1-measurable.

Observe that conditioned on the interaction logs (xs, Qs, ysqs)
t−1
s=1, the posterior distribution of

θ∗u,i is Beta(1 + N+
u,i(t − 1), 1 + Nu,i(t − 1) − N+

u,i(t − 1)). Therefore, define random variable

ŷ∗t = E
[
θ∗u,i | Ft−1

]
=

1+N+
u,i

2+Nu,i
, we have by bias-variance decomposition,

E
[
(ŷt − θu,i)2 | Ft−1

]
= E

[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
+ (ŷt − ŷ∗t )2

≥ E
[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
Summing over all time steps, we have

Reg(T ) ≥ E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷ∗t − θ∗u,i)2
 .

1. We use ysqs to indicate the labeled data information acquired at time step s; if qs = 1, ysqs = ys, in which case the
learner has access to label ys; otherwise qs = 0, ysqs = 0, in which case the learner does not have label ys available.

14
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On the other hand, from Lemma 11, we have for all t ∈ Iu,i,

E
[
(ŷt − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min(γ · (1− γ), (2γ − 1)2).
By the tower property of conditional expectation and conditional Jensen’s inequality, we have

E
[
(ŷt − θu,i)2 | θ∗

]
≥ E

[
f(θ∗u,i)

Nu,i(T ) + 2
| θ∗
]
≥

f(θ∗u,i)

2(E
[
Nu,i(T ) | θ∗

]
+ 2)

.

Summing over all t in Iu,i, and then summing over all subblocks (u, i) : u ∈ [m], i ∈ [du], we have

E
[
Reg(T ) | θ∗

]
=

m∑
u=1

du∑
i=1

∑
t∈Iu,i

E
[
(ŷt − θu,i)2 | θ∗

]

≥
m∑
u=1

du∑
i=1

bTu/duc · f(θ∗u,i)

2(E
[
Nu,i(T ) | θ∗

]
+ 2)

≥
m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

(11)

Combining the above inequality with Equation (10), we have:

3B · E
[
Reg(T ) | θ∗

]
≥

 m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

 ·
 m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) | θ∗

]
+ 2)


≥ 1

4

 m∑
u=1

du∑
i=1

(√
Tu/du ·

√
f(θ∗u,i)

)2

where the second inequality is from Cauchy-Schwarz. Now taking expectation over θ, using Jensen’s
inequality and Lemma 12 that E

√
f(θ∗u,i) ≥

1
25 , and some algebra yields

3B · E
[
Reg(T )

]
≥ 1

2

 m∑
u=1

du∑
i=1

(√
Tu/du · E

[√
f(θ∗u,i)

])2

≥ 1

2500

 m∑
u=1

√
duTu

2

.

In conclusion, we have

EReg(T ) ≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B

.

As the above expectation is over θ∗ chosen randomly from Dθ, there must exists an θ∗ from
supp(Dθ) = [0, 1]d such that

E
[
Reg(T ) | θ∗

]
≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B
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holds. This θ∗ has `2 norm at most
√∑d

j=1(θ
∗
j )

2 ≤
√
d.

Lemma 11 If t is in Iu,i, then

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min
(
γ(1− γ), (2γ − 1)2

)
.

Proof We condition on Nu,i(T ) = m, and a value of θ∗. Recall that ŷ∗t =
1+N+

u,i

2+Nu,i
=

1+N+
u,i

2+m , where

N+
u,i can be seen as drawn from the binomial distribution Bin(m, θu,i). Therefore,

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ) = m, θ∗

]
=E

[
(
1 +N+

u,i

2 +m
− θ∗u,i)2 | Nu,i(T ) = m, θ∗

]

=
mθu,i(1− θu,i)

(m+ 2)2
+

(2θ∗u,i − 1)2

(m+ 2)2

≥ m+ 1

(m+ 2)2
f(θu,i) ≥

f(θu,i)

2(m+ 2)

Lemma 12 Suppose Z ∼ Beta(1, 1). Then E
√
f(Z) ≥ 1

25 .

Proof We observe that

E
√
f(Z) =

∫
[0,1]

√
f(z)dz ≥

∫
[ 1
5
, 2
5
]

√
f(z)dz,

Now, for all z ∈ [15 ,
2
5 ],
√
f(z) ≥

√
1
25 = 1

5 , which implies that the above integral is at least 1
25 .

A.4 Proof of Theorem 6

First, we clarify that in the setting of Theorem 6, we require that the partition
{
Iu : u ∈ [m]

}
to have

a properties that we call admissibility.

Definition 13 The partition
{
Iu : u ∈ [m]

}
is called admissible, if ut = {u : t ∈ Iu} is only depen-

dent on the interaction history up to t− 1 and unlabeled example xt; formally, ut is σ(Ht−1, xt)-
measurable.
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Recall that we define

βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +
√

2η2 ln (16k2/δ)),

and
Ru :=

Tu
T 2

+ 4 min(d′u, Tu) + 4d′uβT lnTu = Õ
(
η2d′u logN (F , T−2, ‖ · ‖∞)

)
.

Analogous to Theorem 1, the following theorem provides the query and regret guarantees of of
Algorithm 3.

Theorem 14 Suppose the example sequence {xt}Tt=1 has the following structure: [T ] has an admis-
sible partition

{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and the eluder dimension of F w.r.t.

{xt}t∈Iu is d′u. Suppose α ≥ η̃2 maxu∈[m]Ru/Tu. With probability 1− δ, Algorithm 3 satisfies:
1. Its query complexity Q = Õ(η̃ ·

√
α
∑

u

√
RuTu).

2. Its regret R = Õ(η̃ ·
∑

u

√
RuTu)/

√
α.

We shall prove Theorem 6 directly below; the proof of Theorem 14 follows as a corollary, us-
ing the same argument in the proof of Theorem 2; we note that the admissibility assumption on{
Iu : u ∈ [m]

}
ensures that {Ait(rit − pit)1[t ∈ I]}Tt=1 and {Ait(rit − pit)∆t1[t ∈ I]}Tt=1 are still

martingale difference sequences in our proof.
Proof [Proof of Theorem 6] We focus on proving the analogues of Lemma 7 and Lemma 8; and the
rest of proof follows the same argument as the proof of Theorem 2.

Lemma 15 (Analogue of Lemma 7) With probability 1− δ/2, R ≤
∑T

t=1 ∆t.

Proof Recall that the confidence set at time t is Ft = {f ∈ F :
∑

i∈Qt (f(xi)− f̂t(xi))2 ≤
β|Qt|(F , δ)}. By Russo and Van Roy (2013, Proposition 2), we have that with probability 1− δ/2,
f∗ ∈ Ft, for all t ∈ [T ].

Meanwhile, if f∗ ∈ Ft, for all t ∈ [T ], (f̂t(xt)−f∗(xt)) ≤ supf1,f2∈Ft(f1(xt)−f2(xt))
2 = ∆t.

This implies that the regret is bounded by R ≤
∑T

t=1 ∆t.

Lemma 16 (Analogue of Lemma 8)
∑

t∈Iu qt∆t ≤ Ru.

Proof Let k = |Iu ∩QT | and write d = d′u as a shorthand. Let (D1, . . . , Dk) be {∆t : t ∈ Iu∩QT }
sorted in non-increasing order. We have

∑
t∈Iu∩QT

∆t =

k∑
j=1

Dj =

k∑
j=1

Dj1[Dj ≤ 1/T 4] +

k∑
j=1

Dj1[Dj > 1/T 4].

Clearly,
∑k

j=1Dj1[Dj ≤ 1/T 4] ≤ Tu
T 2 .

We know for all j ∈ [k], Dj ≤ 4. In addition, Dj > ε2 ⇐⇒
∑

t∈Iu∩QT 1[∆t > ε2] ≥ j. By
Lemma 17 below, this can only occur if j < (4βT /ε

2+1)d. Thus, whenDj > ε2, j < (4βT /ε
2+1)d,

which implies ε2 < 4βT d
j−d . This shows that if Dj > 1/T 4, Dj ≤ min

{
4, 4βT dj−d

}
. Therefore∑

j Dj1[Dj > 1/T 4] ≤ 4d+
∑k

j=d+1
4βT d
j−d ≤ 4d+ 4dβT log Tu.
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Consequently,∑
t∈Iu

qt∆t =
∑

t∈Iu∩QT

∆t ≤ min

{
4Tu,

Tu
T 2

+ 4d′u + 4d′uβT log Tu

}
≤ Ru.

The following lemma generalizes Russo and Van Roy (2013, Proposition 3), in that it considers a
subsequence of examples coming from a subdomains of X . We define dimE

I as the eluder dimension
of F with respect to support {xt : t ∈ I}. It can be easily seen that dimE

Iu ≤ dimE
u .

Lemma 17 Fix I ⊆ [T ]. If {βt ≥ 0}Tt=1 is a nondecreasing sequence and Ft := {f ∈ F :∑
i∈Qt (f(xi)− f̂t(xi))2 ≤ β|Qt|(F , δ)}, then

∀ε > 0,
∑

t∈I∩QT

1[∆t > ε2] <

(
4βT
ε2

+ 1

)
dimE

I (F , ε).

Proof Let k = |I ∩QT |, (a1, . . . , ak) = (xt : t ∈ I ∩ QT ), and (b1, . . . , bk) = (∆t : t ∈
I ∩ QT ). First, we show that if bj > ε2 then aj is ε-dependent on fewer than 4βT /ε

2 disjoint
subsequences of (a1, . . . , aj−1), for j ≤ k. If bj > ε2 and aj = xt, there are f1, f2 ∈ Ft such
that f1(aj) − f2(aj) > ε. By definition, if aj is ε-dependent on a subsequence (ai1 , . . . , aip)
of (a1, . . . , aj−1), then

∑p
l=1 (f1(ail)− f2(ail))2 > ε2. Thus, if aj = xt is ε-dependent on K

subsequences of (a1, . . . , aj−1), then
∑

i∈Qt (f1(xi)− f2(xi))2 > Kε2. By the triangle inequality,√∑
i∈Qt

(f1(xi)− f2(xi))2 ≤
√∑
i∈Qt

(f1(xi)− f∗(xi))2 +

√∑
i∈Qt

(f2(xi)− f∗(xi))2 ≤ 2
√
βT .

Thus, K < 4βT /ε
2.

Next, we show that in any sequence of elements in I , (c1, . . . , cτ ), there is some cj that is
ε-dependent on at least τ/d − 1 disjoint subsequences of (c1, . . . , cj−1), where d := dimE

I (F , ε).
For any integer K satisfying Kd + 1 ≤ τ ≤ Kd + d, we will construct K disjoint subsequences
C1, . . . , CK . First let Ci = (ci) for i ∈ [K]. If cK+1 is ε-dependent on C1, . . . , CK , our claim
is established. Otherwise, select a Ci such that cK+1 is ε-independent and append cK+1 to Ci.
Repeat for all j > K + 1 until cj is ε-dependent on each subsequence or j = τ . In the latter case∑
|Ci| ≥ Kd, and |Ci| = d. In this case, cτ must be ε-dependent on each subsequence, by the

definition of dimE
I .

Now take (c1, . . . , cτ ) to be the subsequence (at1 , . . . , atτ ) of (a1, . . . , ak) consisting of ele-
ments aj for which bj > ε2. We proved that each atj is ε-dependent on fewer than 4βT /ε

2 disjoint
subsequences of (a1, . . . , atj−1). Thus, each cj is ε-dependent on fewer than 4βT /ε

2 disjoint sub-
sequences of (c1, . . . , cj−1). Combining this with the fact that there is some cj that is ε-dependent
on at least τ/d − 1 disjoint subsequences of (c1, . . . , cj−1), we have τ/d − 1 < 4βT /ε

2. Thus,
τ < (4βT /ε

2 + 1)d.
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Algorithm 3 QuFUR(α) for Nonlinear Regression

Require: Hypothesis set F , time horizon T , parameters α, δ, η.
1: Labeled dataset Q ← ∅.
2: for t = 1 to T do
3: Predict f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

4: Ft ← {f ∈ F :
∑

i∈Q (f(xi)− f̂t(xi))2 ≤ β|Q|(F , δ)},
5: where βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +

√
2η2 ln (16k2/δ)).

6: ∆t = supf1,f2∈Ft
∣∣f1(xt)− f2(xt)∣∣2.

7: With probability min {1, α∆t}, set qt = 1; otherwise qt = 0.
8: if qt = 1 then
9: Query yt. Q ← Q

⋃
{t}.

Algorithm 4 Fixed-budget QuFUR for general function class

Require: Hypotheses set F , time horizon T , label budget B, parameter δ, noise level η.
1: Labeled dataset Q ← ∅.
2: Number of copies k ← 4dlog2 T e.
3: for i = 0 to k do
4: Parameter αi ← 2i/T 2.
5: for t = 1 to T do
6: Predict f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

7: Confidence set Ft ← {f ∈ F :
∑

i∈Q (f(xi)− f̂(xi))
2 ≤ β|Q|(F , δ)},

8: where βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +
√

2η2 ln (16k2/δ)).
9: Uncertainty estimate ∆t = supf1,f2∈Ft

∣∣f1(xt)− f2(xt)∣∣2.
10: for i = 0 to k do
11: if

∑t−1
j=1 q

i
j < bB/kc then

12: With probability min {1, αi∆t}, set qit = 1.
13: if

∑
i q
i
t > 0 then

14: Query yt. Q ← Q
⋃
{t}.

A.5 Analysis of uniform query strategy for online active linear regression with oblivious
adversary

Theorem 18 With probability 1 − δ, the uniformly querying strategy with probability µ achieves
R = Õ(η̃2d/µ) and Q = O(µT + 1).

Proof [Proof sketch] Let δ′ = δ/3.
As Q =

∑T
t=1 qt is a sum of T independent Bernoulli random variable with mean µ, by Chernoff

bound, Q = O(µT + ln 1
δ ) with probability 1− δ′.

We still define ∆t = η̃2 min{1, ‖xt‖2M−1
t

}.

Using Lemma 8 with {ai}ki=1 = {xt}Tt=1, and S = QT ,
∑

t qt∆t = Õ(η̃2d). Let Zt = qt∆t.
We have Zt ≤ ∆t ≤ η̃2, Et−1Zt = µ∆t, and Et−1Z2

t ≤ η̃2µ∆t. Applying Freedman’s inequality,
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with probability 1− δ′,

T∑
t=1

µ∆t −
T∑
t=1

qt∆t = O

η̃
√√√√ T∑

t=1

µ∆t ln (lnT/δ′) + η̃2 ln (lnT/δ′))


=⇒

∑
t

∆t = Õ(η̃2d/µ).

In addition, applying Lemma 7, with probability 1− δ′,

R = Õ(

T∑
t=1

∆t) = Õ(η̃2d/µ).

Union bound over the three events above completes the proof.

A.6 Lower bound for unstructured domains

We have the following lower bound in the case when there is no domain structure.

Theorem 19 For any set of positive integers d, T,B such that d ≤ T and d ≤ B, there exists an
oblivious adversary such that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1.

2. any online active learning algorithm A with label budget B has regret at least dT
7500B .

Proof This is an immediate consequence of Theorem 3, by setting m = 1, d1 = d, T1 = T , and the
label budget equal to B.

Appendix B. The c-cost model for online active learning

We consider the following variant of our learning model, which models settings where the cost ratio
between a unit of square loss regret and a label query is c to 1. In this setting, the interaction protocol
between the learner and the environment remains the same, with the goal of the learner modified to
minimizing the total cost, formally C = cR+Q. We call the above model the c-cost model. We will
show that Algorithm 1 achieves optimal cost up to constant factors, for a wide range of values of η
and c.

Theorem 20 For any set of positive integers
{

(du, Tu)
}m
u=1

such that du ≤ Tu, ∀u ∈ [m];
∑m

u=1 du ≤
d; cost ratio c ≥ maxu

du
Tu

; real number η ≥ 1; there exists an oblivious adversary such that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; in
addition, the subgaussian variance proxy of noise is η2.

2. it shows examples in m tasks, where the examples from task u has dimension du, and the
duration of task u is Tu.
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3. any online active learning algorithm A has total cost Ω
(√

c · (
∑m

u=1

√
duTu)

)
.

Proof Consider any algorithm A. Same as in the proof of Theorem 3, we will choose θ∗ randomly
where each of its coordinates is drawn independently from the Beta(1, 1) distribution, and show the
exact same sequence of instances {xt}Tt=1 and reveals the labels the same say as in that proof. It can
be seen that the ηt’s are subgaussian with variance proxy 1, which is also subgaussian with variance
proxy η2.

As A can behave differently under different environments, we define E
[
Q | θ∗

]
as A’s query

complexity conditioned on the adversary choosing ground truth linear predictor θ∗.
We conduct a case analysis on the random variable E

[
Q | θ∗

]
:

1. If there exists some θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≥
√
c
(∑m

u=1

√
duTu

)
, then we are done: under

the environment where the ground truth linear predictor is θ∗, the total cost of A, E
[
C | θ∗

]
,

is clearly at least E
[
Q | θ∗

]
≥ Ω

(
√
c
(∑m

u=1

√
duTu

))
.

2. If for every θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≤
√
c
(∑m

u=1

√
duTu

)
, A can be viewed as an algorithm

with label budget B =
√
c
(∑m

u=1

√
duTu

)
. By the premise that c ≥ maxu

du
Tu

, we get that

B ≥
∑m

u=1

√
duTu ·

√
du
Tu

=
∑m

u=1 du. Therefore, from the proof of Theorem 3, we get that

there exists a θ∗ in [0, 1]d, such that

E
[
R | θ∗

]
≥

(
∑

u

√
duTu)2

B
≥ Ω

 1√
c

(∑
u

√
duTu

) ,

which implies that the total cost of A, under the environment where the ground truth linear

predictor is θ∗, E
[
C | θ∗

]
, is at least c · E

[
R | θ∗

]
≥ Ω

(
√
c
(∑

u

√
duTu

))
.

In summary, in both cases, there is an oblivious adversary that uses θ∗ in [0, 1]d, under which A has

a expected cost of Ω

(
√
c
(∑

u

√
duTu

))
.

In the theorem below, we discuss the optimality of Algorithm 1 in the c-cost for a range of
problem parameters.

Theorem 21 Suppose 1 ≤ η ≤ O(1); in addition, consider a set of
{

(Tu, du)
}m
u=1

, such that
minu Tu/du ≥ η. Fix c ∈ [maxu

du
Tu
, 1
η2

minu
Tu
du

]. We have

1. Under all environments with domain dimension and duration
{

(Tu, du)
}m
u=1

, such that ‖θ∗‖ ≤
C and maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, QuFUR(c) (with the knowledge of norm bound C) has the
guarantee that

C ≤ Õ

(
√
c ·
∑
u

√
Tudu

)
,
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2. For any algorithm, there exists an environment with domain parameters
{

(Tu, du)
}m
u=1

such
that ‖θ∗‖ ≤

√
d and maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, under which the algorithm must have the
following cost lower bound:

C ≥ Ω

(
√
c ·
∑
u

√
Tudu

)
,

Proof We show the two items respectively:

1. As c ≤ η̃2 minu
Tu
du

, applying Theorem 1, we have that QuFUR(c) achieves the following
regret and query complexity guarantees:

Q ≤
√
cO(η̃

∑
u

√
Tudu), R ≤ O(η̃

∑
u

√
Tudu/

√
c).

This implies that

C = cQ+R ≤ O(η̃
∑
u

√
Tudu ·

√
c) = O(

√
c ·
∑
u

√
Tudu).

2. By the premise that c ≥ maxu
du
Tu

, applying Theorem 20, we get the item.

Appendix C. Clarification of regret definition

Recall that in the main text, we define the regret of an algorithm as R =
∑T

t=1(ŷt−f∗(xt))2. This is
different from the usual definition of regret in online learning, which measures the difference between
the loss of the learner and that of the predictor θ∗: Reg =

∑T
t=1(ŷt − yt)2 −

∑T
t=1(f

∗(xt)− yt)2.
We show a standard a result in this section that the expectation of these two notions coincide.

Theorem 22 E[R] = E[Reg].

Proof Denote by Ft−1 be the σ-algebra generated by all observations up to time t− 1, and xt. As a
shorthand, denote by Et−1[·] = E[· | Ft−1].

Let Zt = (ŷt − yt)2 − (f∗(xt)− yt)2; we have

Et−1Zt = Et−1
[
(ŷt − f∗(xt) + f∗(xt)− yt)2 − (f∗(xt)− yt)2

]
= Et−1

[
(f∗(xt)− ŷt)2 + 2(ŷt − f∗(xt))(f∗(xt)− yt)

]
= (f∗(xt)− ŷt)2

where the last inequality uses the fact that Et−1(f∗(xt)−yt) = 0 and ŷt−f∗(xt) isFt−1-measurable.
Consequently, EZt = E(f∗(xt)− ŷt)2. The theorem is concluded by summing over all time steps t
from 1 to T .
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Appendix D. Online to batch conversion

In this section we show a straightforward result on online to batch conversion in active learning
setting.

Theorem 23 Suppose online active learning algorithm A sequentially receives a set of iid examples
(xt, yt)

T
t=1 drawn from D, and at every time step t, it outputs predictor f̂t : X → Y . In addition, sup-

pose ` : Y×Y → R is a loss function. Define regret Reg =
∑T

t=1 `(f̂t(xt), yt)−
∑T

t=1 `(f
∗(xt), yt),

and define `D(f) = E(x,y)∼D`(f(x), y). If E [Reg] ≤ R0, then,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ R0

T
.

Proof As Reg =
∑T

t=1 `(f̂t(xt), yt)−
∑T

t=1 `(f
∗(xt), yt), We have

R0 ≥ E [Reg] =

T∑
t=1

E
[
`D(f̂t)

]
− E

 T∑
t=1

`(f∗(xt), yt)


= T ·

 1

T

T∑
t=1

E
[
`D(f̂t)

]
− E(x,y∼D`(f

∗(x), y).


The theorem is proved by dividing both sides by T and recognizing that 1

T

∑T
t=1 E

[
`D(f̂t)

]
=

Ef∼uniform(f̂1,...,f̂T )
`D(f).

Combining Theorem 23 with Theorem 2, we have the following theorem on fixed-budget QuFUR
(Algorithm 2) when run on iid data with domain structure:

Theorem 24 Suppose the unlabeled data distributionDX - a mixtureDX =
∑m

u=1 puDu, whereDu

is supported on a subspace of Rd of dimension du - intersects with the set
{
x : ‖x‖2 ≤ 1,

∣∣〈θ∗, x〉∣∣ ≤ 1
}

.
The conditional distribution of y given x is y = 〈θ∗, x〉+ ξ where ξ is a subgaussian with variance

proxy η2. In addition, suppose integersB, T0 satisfy T0 ≥ Ω

max

(
B∑

u

√
dupu·minu

√
pu
du

, lnm
minu pu

).

If Algorithm 2 is given dimension d, time horizon T ≥ T0, label budget B, norm bound C, noise
level η as input, then, with probability 1− δ:
1. It uses T unlabeled examples.
2. Its query complexity Q is at most B.
3. Denote by `(ŷ, y) = (ŷ − y)2 the square loss. We have,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ O(

η̃2(
∑

u

√
dupu)2

B
).

Proof [Proof sketch] From Theorem 23 it suffices to show that

E [Reg] ≤ O(
η̃2T · (

∑
u

√
dupu)2

B
).
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By Theorem 22, E [Reg] = E [R], it therefore reduces to showing that

E [R] ≤ O(
η̃2T · (

∑
u

√
dupu)2

B
).

We first show a high probability upper bound of R. Given a sequence of unlabeled examples
(xt)

T
t=1, we denote by Su the subset of examples drawn from component Du, and denote by Tu the

size of Su. From the assumption of Du, we know that Su all lies in a subspace of dimension du.
First, from the assumption that T ≥ T0 ≥ Ω( 1

minu pu
), we have that by Chernoff bound, with

probability 1− 1
T 2 , for all u, Tu ∈ [Tpu/2, 2Tpu]. We call the set of unlabeled examples good.

Conditioned on a set of good unlabeled examples, we have that

B ≤ Õ(T ·
∑
u

√
dupu min

u

√
pu/du) ≤ Õ(

∑
u

√
duTu min

u

√
Tu/du).

Therefore, applying Theorem 2, we have that conditioned on a good sample, with probability 1− 1
T 2

over the draw of (yt)
T
t=1,

R ≤ O(
η̃2 · (

∑
u

√
duTu)2

B
) ≤ O(

η̃2T · (
∑

u

√
dupu)2

B
).

Combining the above two equations, we conclude that with probability 1− 2
T 2 ,

R ≤ O(
η̃2T · (

∑
u

√
dupu)2

B
).

Observe that with probability 1, ŷt ∈ [−1, 1] and 〈θ∗, xt〉 ∈ [−1, 1]. Therefore, R =
∑T

t=1(ŷt −
〈θ∗, xt〉)2 ∈ [0, 4T ]. Hence,

E[R] ≤ (1− 2

T 2
) ·O(

η̃2T · (
∑

u

√
dupu)2

B
) +

2

T 2
· 4T = O(

η̃2T · (
∑

u

√
dupu)2

B
).

The theorem follows.

Appendix E. Additional experimental details

Datasets We create a synthetic dataset with 20 domains. Each domain has either Tu = 100 and
du = 6, or Tu = 50 and du = 3. Inputs from each domain spans a random subset of du out of d = 40
dimensions, with potential overlap between domains. θ∗ is a random vector on the unit sphere in Rd,
as are xi’s from domain u in Rdu . Noise ξt’s are iid zero-mean Gaussian with variance η2 = 0.1.

We also experiment on two real-world LIBSVM datasets (Chang and Lin, 2011) cpu-small and
Abalone. cpu-small uses 12 features, such as system reads/writes per second, to predict portion of
time that cpu runs in user mode. Abalone uses 8 features (physical measurements) to predict animal
ages.

Algorithms We run QuFUR(α) for α ∈ [1/400, 400] and uniform queries with probability µ ∈
[0.01, 1]. Figure 1 shows that QuFUR achieves the lowest total regret under the same labeling budget
across all 3 datasets. Notably, QuFUR’s advantage is more significant on cpu-small. We conjecture
that this task has underlying domain structure, as different CPU usage modes may be predicted
from a subset of metrics. QuFUR potentially exploits this latent structure without knowledge of its
existence.
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Figure 1: Total regret vs. total number of queries in synthetic dataset (left), cpu-small dataset
(middle), and Abalone dataset (right), averaged across 5 runs. QuFUR is best and has more advan-
tage on cpu-small potentially due to latent domain structure, whereas Abalone is more homogeneous.
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Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. In International Conference on Computational Learning Theory, pages 77–92. Springer,
2004b.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online decision problems. In
Electronic colloquium on computational complexity (ECCC), volume 14, 2007.

Wouter M Kouw and Marco Loog. An introduction to domain adaptation and transfer learning. arXiv
preprint arXiv:1812.11806, 2018.
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