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Abstract

We consider the problem of optimizing expensive black-box functions over discrete spaces
(e.g., sets, sequences, graphs). The key challenge is to select a sequence of combinatorial
structures to evaluate, in order to identify high-performing structures as quickly as possible.
Our main contribution is to introduce and evaluate a new learning-to-search framework for
this problem called L2S-DISCO. The key insight is to employ search procedures guided
by control knowledge at each step to select the next structure and to improve the control
knowledge as new function evaluations are observed. We provide a concrete instantiation of
L2S-DISCO for local search procedure and show the efficacy of L2S-DISCO over state-of-
the-art algorithms by empirically evaluating it on diverse real-world benchmarks.

1. Introduction

Many scientific and engineering applications including materials and hardware design involve
optimizing discrete spaces (e.g., sets, sequences, graphs) guided by expensive black-box
function evaluations. For example, in the application of finding alloys with high creep-
resistance, we need to search over subsets of a given set of candidate metals guided by
physical lab experiments. The key challenge in this problem is to select a sequence of
combinatorial structures to evaluate, in order to uncover high-performing structures as
quickly as possible. This involves solving a combinatorial optimization problem in each
Bayesian optimization (BO) iteration, whose difficulty depends critically on the complexity
of statistical surrogate model learned from past function evaluations.

There is very limited work on BO over discrete spaces. SMAC Hutter et al. (2010,
2011) is one canonical baseline which employs random forest as surrogate model and a
hand-designed local search procedure for optimizing the acquisition function. BOCS Baptista
and Poloczek (2018) is a state-of-the-art method that employs a second order linear Bayesian
model defined over binary variables as the surrogate model. However, this simple model
with second-order interactions may not suffice for optimization problems with complex
interactions. There is also work on solving BO over discrete spaces by learning continuous
representation from data and perform BO in this continuous latent space Gémez-Bombarelli
et al. (2018). The main drawback of this method is that it generates a large fraction of
invalid structures while also requiring a large database of “relevant” structures, for learning
the latent space representation.



In this paper, we introduce a new learning-to-search framework referred as L2S-DISCO
to select the sequence of combinatorial structures for evaluation. L2S-DISCO employs a
search procedure (e.g., local search with multiple restarts) guided by appropriate search
control knowledge (e.g., heuristic function to select good starting states), and continuously
improves the control knowledge using advanced machine learning techniques. We provide a
concrete instantiation of L2S-DISCO for local search based optimization by specifying the
form of training data, and a rank learning formulation to update the search heuristic for
selecting promising starting states. Experimental results on diverse benchmarks show the
efficacy of L2S-DISCO on complex real-world problems.

2. Problem Setup and Challenges

Problem definition. Let X be a combinatorial space of objects to be optimized over,
where each element z = {v1,---v1} € X is a discrete structure (e.g., set, sequence, graph)
and each variable v; in x can take candidate values from a finite set C(v;). We assume
an unknown real-valued objective function F : X — R, which provides noisy evaluations
for each candidate structure x € X. The main goal is to find a structure x € X that
approximately optimizes F by conducting a limited number of function evaluations.

Bayesian optimization formulation and challenges. Bayesian optimization (BO)
methods Shahriari et al. (2016); Belakaria et al. (2019, 2020a,b,c) build a surrogate statistical
model M, e.g., Gaussian Process (GP), from the training data of past function evaluations
and employ it to sequentially select a sequence of inputs for evaluation to solve the problem
The selection of inputs is performed by optimizing an acquisition function AF that is
parameterized by the current model M and input z € X to score the utility of candidate
inputs for evaluation. Some example acquisition functions include expected improvement
(EI) Jones et al. (1998) and upper-confidence bound (UCB) Srinivas et al. (2010). There are
two key challenges in using BO for discrete spaces. 1. Surrogate statistical modeling: GPs
are the popular choice for building statistical models in BO over continuous spaces which
require defining an appropriate kernel on the combinatorial space. Random forest (RF)
models can be used as an alternate generic choice to handle discrete spaces. In this work,
we employ RF models as part of our experiments. 2. Acquisition function optimization. In
each iteration of BO, we need to solve the following optimization problem to select the next
candidate structure for evaluation.

Tnext = ArGMaATycx A]:(M7 .Z') (1)

The key challenge for discrete spaces is that, Equation 1 corresponds to solving a general
combinatorial optimization problem. The effectiveness of BO critically depends on the
accuracy of solving this optimization problem. In this paper, our main focus is on addressing
this challenge using a novel learning to search framework.

3. L2S-DISCO: A Learning to Search Framework

L2S-DISCO integrates machine learning techniques and Al search in a principled manner
for accurately solving AFO problems to select combinatorial structures for evaluation. This
framework allows us to employ surrogate statistical models of arbitrary complexity and



can work with any acquisition function. The key insight behind L2S-DISCO is to directly
tune the search via learning during the optimization process to select the next structure
for evaluation. The search-based perspective has several advantages: 1) High flexibility in
defining search spaces over structures; 2) Easily handles domain constraints that determine
which structures are “valid”; 3) Allows to incorporate prior knowledge.
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Figure 1: High-level overview of L2S-DISCO instantiation for local search.

Overview of L2S-DISCO. L25S-DISCO is parameterized by a search space S over struc-
tures, a learned function AF(M,z € X) to score the utility of structures for evaluation, a
search strategy A (e.g., local search), and a learned search control knowledge H to guide
the search towards high-scoring structures. In each BO iteration, we perform the following
two steps repeatedly until the maximum time-bound is exceeded or a termination criteria is
met. Step 1: Execute search strategy A guided by the current search control knowledge
to uncover promising structures. Step 2: Update the parameters of the search control
knowledge H using the online training data generated from the recent search experience.
Fig 1 illustrates the instantiation of L2S-DISCO for local search. Each structure z € X
uncovered during the entire search is scored according to AF (M, x) and we select the highest
scoring structure x,e.¢ for function evaluation. We perform experiment using the selected
structure Tpe,: and observe the outcome F(Zpert). The statistical model M is updated
using the new training example (Zpext, F (Tnest)). We repeat the next iteration of BO via
L2S-DISCO using the current search control knowledge.

Key Elements. There are two key elements in L2S-DISCO that need to be specified to
instantiate it for a given search procedure. 1) The form of training data to learn search
control knowledge #; and 2) The learning formulation and associate learning algorithm to
update the parameters of search control knowledge H using online training data. These
elements vary for different search procedures and forms of search control knowledge. Below
we provide a concrete instantiation of L2S-DISCO for local search based acquistion function
optimization that will be employed for our empirical evaluation.

3.1 Instantiation of L2S-DISCO for Local Search

Recall that local search based AFO solver performs multiple runs of local search guided by
the acquisition function AF (M, z) from different random starting states. The search space
is defined over complete structures, where each state corresponds to a complete structure
x € X. The successors of a state with structure z referred as N'(z), is the set of all structures



' € X such that the hamming distance between x and 2’ is one. The effectiveness of
local search depends critically on the quality of starting states. Therefore, we instantiate
L2S-DISCO for local search and learn a search heuristic H(f, x) to select good starting
states that will allow local search to uncover high-scoring structures from X according to
AF (M, ). The two key elements of L2S-DISCO for local search are defined below:

1) Training data. The set of search trajectories 7 obtained by performing local search
from different starting states and acquisition function scores for local optima correspond to
the training data. Each search trajectory T' € T consists of the sequence of states from the
starting state xsqr¢ to the local optima xp,q. Suppose V(T)=AF (M, xcpq) represents the
acquisition function score of the local optima for 7T'.

2) Rank learning formulation. The role of the heuristic H(6,x) is to rank candidate
starting states according to their utility in uncovering high-scoring structures from X via
local search. Recall that if we perform local search guided by AF (M, z) from any state x on
a search trajectory T' € T, we will reach the same local optima with acquisition function score
V(T). In other words, every state on the trajectory T' € T has the same utility. Therefore,
we formulate the problem of learning the search heuristic as an instance of bipartite ranking
Agarwal and Roth (2005). Specifically, for every pair of search trajectories Ty,T5 € T, if
V(Th) > V(T3), then we want to rank every state on the trajectory 77 better than every
state on the trajectory To. We will generate one ranking example for every pair of states
(x1,x2), where z is a state on the trajectory 77 and z is a state on the trajectory Tb. The
aggregate set of ranking examples are given to an off-the-shelf rank learner to induce H (6, x),
where 6 are the parameters of the ranking function.

L2S-DISCO for local search based optimization. Figure 1 illustrates L2S-DISCO
instantiation for local search based acquisition function optimization. At a high-level, each
iteration of L2S-DISCO consists of two alternating local search runs. First, local search
guided by heuristic H to select the starting state. Second, local search guided by AF from

Algorithm 1 L2S-DISCO for local search

Input: X'= space of combinatorial structures, AF (M, z)= acquisition function, H(#, x)= search heuristic
from previous BO iteration, RANKLEARN= rank learner

Output: Znest, the selected structure for function evaluation

1: Initialization: 7 < () (training data of local search trajectories) and Ssiart <— 0 (set of starting states)

2: repeat

3:  Perform local search from a random state x € X guided by heuristic H (0, z) to reach a local optima
Trestart

4 if Trestart € Sstart then

5: Tstart < random structure from X

6: else

7' Tstart < Trestart

8: end if

9: Perform local search from xstart guided by AF (M, x)

10: Add the new search trajectory and AF (M, Zend) to T

11:  Update heuristic H(6,z) via rank learner using 7

12: Sstart <~ Sstart (@] Tstart

13: until convergence or maximum iterations

14: Zpezt < best scoring structure as per AF (M, x) found during the entire search process

15: return the selected structure for evaluation Znezt




the selected starting state. After each local search run, we get a new local search trajectory,
and the heuristic function H is updated to be consistent with this new search trajectory.
Algorithm 1 shows the pseduo-code for learning based local search to solve AFO problems
arising in BO iterations. This instantiation of L2S-DISCO is similar in spirit to the STAGE
algorithm Boyan and Moore (2000).

4. Experiments and Results

In this section, we first describe our experimental setup and then discuss the results of
L2S-DISCO and baseline methods.

4.1 Experimental Setup

Benchmark Domains. We employ four diverse benchmark domains for our empirical
evaluation.

1. Contamination. The problem considers a food supply with d stages, where a binary
{0,1} decision must be made at each stage to prevent the food from being contaminated with
pathogenic micro-organisms Hu et al. (2010). Following Baptista and Poloczek (2018), the la-

grangian relaxation based problem formulation is arg min, Z?:l citi + & 25:1 Lizosua |+
Al|z||1 where ¢; is the cost of prevention effort, A; is the rate of spread of contamination,

A is a regularization coeflicient, U; is the upper limit on the contamination level, Z; is the
fraction of contaminated food at stage i, violation penalty coefficient p=1, and T=100.

2. Sparsification of zero-field Ising models. The distribution of a zero field
Ising model p(z) for z € {—1,1}" is characterized by a symmetric interaction matrix
JP whose support is represented by a graph GP = ([n], EP) that satisfies (i,j) € EP if
and only if Jg # 0 holds Baptista and Poloczek (2018). The overall goal is to find a
close approximate distribution ¢(z) while minimizing the number of edges in E9. There-
fore, the objective function in this case is a regularized KL-divergence between p and
¢: Dr(pllgz) = Z(i,j)eEp(JZ- - J%)Ep[zizj] +log(Zy/Z,) where Z, and Z, are partition
e

functions corresponding to p and ¢ respectively, and x € {0,1 is the decision variable

representing whether each edge is present in E? or not.

3. Low auto-correlation binary sequences (LABS). The problem is to find a binary

{+1,-1} sequence S = (s1, S2, -+ , sp) of given length n that maximizes merit factor defined
2

over a binary sequence as: Merit Factor(S) = grgy where E(S) = i (Z?;lk sisHk)z

4. Network optimization in multicore chips. There are 12 cores whose placements
are fixed and the goal is to place 17 links between them to optimize performance: 66
binary variables in a multicore system. There is one constraint to determine valid structures:
existence of a viable path between any pair of cores.

Baseline Methods. We compare the local search instantiation of L2S-DISCO with two
state-of-the-art methods: SMAC Hutter et al. (2011) and BOCS Baptista and Poloczek
(2018) on the best function value achieved after a given number of iterations as a metric. The
method that uncovers high-performing structures with less number of function evaluations
is considered better. For more details, please see the full paper Deshwal et al. (2020).
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Figure 2: Results on four different benchmarks comparing L2S-DISCO with BOCS and
SMAC.

4.2 Results and Discussion

Figure 2 shows the comparison of L2S-DISCO with SMAC and BOCS baselines. We make
the following observations. 1) Both L2S-DISCO variants that use EI and UCB acquisition
functions perform better than SMAC on contamination and Ising domain. 2) Results of
L2S-DISCO are comparable to BOCS on the contamination problem. The main reason
BOCS performs slightly better in these two domains is that they exactly match the modeling
assumptions of BOCS, which allows the use of SDP based solver to select structures for
evaluation. 3) L2S-DISCO clearly outperforms both BOCS and SMAC on LABS domain.
BOCS has the advantage of SDP based solver, but its statistical model that accounts for
only pair-wise interactions is limiting to account for the complexity in this problem. SMAC
and L2S-DISCO both employ random forest model, but L2S-DISCO does better in terms
of acquisition function optimization by integrating learning with search. 4). We can see
that L2S-DISCO performs significantly better than BOCS in the network optimization
domain. BOCS seems to get stuck for long periods, whereas L2S-DISCO shows consistent
improvement in uncovering high-performing structures. This behavior of BOCS can be partly
attributed to the limitations of both surrogate model and acquisition function optimizer.
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