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Abstract

We consider the problem of multi-objective (MO) blackbox optimization using expensive
function evaluations, where the goal is to approximate the true pareto-set of solutions by
minimizing the number of function evaluations. For example, in hardware design optimiza-
tion, we need to find the designs that trade-off performance, energy, and area overhead
using expensive computational simulations. In this paper, we propose a novel approach
referred as Max-value Entropy Search for Multi-objective Optimization (MESMO) to solve
this problem. MESMO employs an output-space entropy based acquisition function to effi-
ciently select the sequence of inputs for evaluation to quickly uncover high-quality pareto-set
solutions. We also provide theoretical analysis to characterize the efficacy of MESMO. Our
experiments on several synthetic and real-world benchmark problems show that MESMO
consistently outperforms the state-of-the-art algorithms.

1. Introduction

Many engineering and scientific applications involve making design choices to optimize 
multiple objectives. Some examples include tuning the knobs of a compiler to optimize 
performance and efficiency of a set of software programs; and designing new materials to 
optimize strength, elasticity, and durability. There are two common challenges in solving 
this kind of optimization problems: 1) The objective functions are unknown and we need to 
perform expensive experiments to evaluate each candidate design choice. For example, per-
forming computational simulations and physical lab experiments for compiler optimization 
and material design applications respectively. 2) The objectives are conflicting in nature 
and all of them cannot be optimized simultaneously. Therefore, we need to find the Pareto 
optimal set of solutions. A solution is called Pareto optimal if it cannot be improved in 
any of the objectives without compromising some other objective. The overall goal is to 
approximate the optimal Pareto set by minimizing the number of function evaluations.

Bayesian Optimization (BO) Shahriari et al. (2016) is an effective framework to solve 
blackbox optimization problems with expensive function evaluations. The key idea behind 
BO is to build a cheap surrogate model (e.g., Gaussian Process Williams and Rasmussen 
(2006)) using the real experimental evaluations; and employ it to intelligently select the 
sequence of function evaluations using an acquisition function, e.g., expected improvement 
(EI). There is a large body of literature on single-objective BO algorithms Shahriari et al.
(2016); Deshwal et al. (2020) and their applications including hyper-parameter tuning of 
machine learning methods Snoek et al. (2012); Kotthoff et al. (2017); Belakaria et al. (2020c).



However, there is relatively less work on the more challenging problem of BO for multiple
objective functions Hernández-Lobato et al. (2016).

Prior work on multi-objective BO Belakaria et al. (2020a) is lacking in the following ways.
Many algorithms reduce the problem to single-objective optimization by designing appro-
priate acquisition functions, e.g., expected improvement in Pareto hypervolume Knowles
(2006); Emmerich and Klinkenberg (2008). Unfortunately, this choice is sub-optimal as it
can potentially lead to aggressive exploitation behavior. Additionally, algorithms to opti-
mize Pareto Hypervolume (PHV) based acquisition functions scale poorly as the number
of objectives and dimensionality of input space grows. Other method relies on input space
entropy based acquisition function Hernández-Lobato et al. (2016) to select the candidate
inputs for evaluation. However, it is computationally expensive to approximate and opti-
mize this acquisition function. More details about prior work can be found in Belakaria
et al. (2019).

In this paper, we propose a novel and principled approach referred as Max-value Entropy
Search for Multi-objective Optimization (MESMO) to overcome the drawbacks of prior
work. MESMO employs an output space entropy based acquisition function to select the
candidate inputs for evaluation. The key idea is to evaluate the input that maximizes the
information gain about the optimal Pareto front in each iteration. Output space entropy
search has many advantages over algorithms based on input space entropy search: a) allows
much tighter approximation; b) significantly cheaper to compute; and c) naturally lends
itself to robust optimization. Indeed, our experiments demonstrate these advantages of
MESMO. Our work is inspired by the recent success of single-objective BO algorithms
based on the idea of optimizing output-space information gain Wang and Jegelka (2017);
Hoffman and Ghahramani (2015), which are shown to be most efficient and robust among a
family of information-theoretic acquisition functions Hennig and Schuler (2012); Hernández-
Lobato et al. (2014). Specifically, we extend the max-value entropy search approach Wang
and Jegelka (2017) to the challenging multi-objective setting.

2. Background and Problem Setup

Bayesian Optimization (BO) Framework. BO is a very efficient framework to solve
global optimization problems using black-box evaluations of expensive objective functions.
Let X ⊆ <d be an input space. In single-objective BO formulation, we are given an unknown
real-valued objective function f : X 7→ <, which can evaluate each input ~x ∈ X to produce an
evaluation y = f(~x). Each evaluation f(~x) is expensive in terms of the consumed resources.
The main goal is to find an input ~x∗ ∈ X that approximately optimizes f by performing a
limited number of function evaluations. BO algorithms learn a cheap surrogate model from
training data obtained from past function evaluations. They intelligently select the next
input for evaluation by trading-off exploration and exploitation to quickly direct the search
towards optimal inputs. The three key elements of BO framework are:

1) Statistical Model of the true function f(x). Gaussian Process (GP) Williams
and Rasmussen (2006) is the most commonly used model. A GP over a space X is a random
process from X to <. It is characterized by a mean function µ : X 7→ < and a covariance
or kernel function κ : X × X 7→ <. If a function f is sampled from GP(µ, κ), then f(x) is
distributed normally N (µ(x), κ(x, x)) for a finite set of inputs from x ∈ X .
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2) Acquisition Function (α) to score the utility of evaluating a candidate input
~x ∈ X based on the statistical model. Some popular acquisition functions in the single-
objective literature include expected improvement (EI), upper confidence bound (UCB),
predictive entropy search (PES) Hernández-Lobato et al. (2014), and max-value entropy
search (MES) Wang and Jegelka (2017).

3) Optimization Procedure to select the best scoring candidate input according to
α depending on statistical model. DIRECT Jones et al. (1993) is a very popular approach
for acquisition function optimization.

Multi-Objective Optimization (MOO) Problem. Without loss of generality, our
goal is to minimize real-valued objective functions f1(~x), f2(~x), · · · , fK(~x), with K ≥ 2,
over continuous space X ⊆ <d. Each evaluation of an input ~x ∈ X produces a vector of
objective values ~y = (y1, y2, · · · , yK) where yi = fi(x) for all i ∈ {1, 2, · · · ,K}. We say
that a point ~x Pareto-dominates another point ~x′ if fi(~x) ≤ fi(~x′) ∀i and there exists some
j ∈ {1, 2, · · · ,K} such that fj(~x) < fj(~x′). The optimal solution of MOO problem is a set

of points X ∗ ⊂ X such that no point ~x′ ∈ X \ X ∗ Pareto-dominates a point ~x ∈ X ∗. The
solution set X ∗ is called the optimal Pareto set and the corresponding set of function values
Y∗ is called the optimal Pareto front. Our goal is to approximate X ∗ by minimizing the
number of function evaluations.

3. MESMO Algorithm for Multi-Objective Optimization

In this section, we explain the technical details of our proposed MESMO algorithm. We first
mathematically describe the output space entropy based acquisition function and provide
an algorithmic approach to efficiently compute it.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate
models in prior work on single and multi-objective BO Hernández-Lobato et al. (2014);
Wang et al. (2016); Wang and Jegelka (2017); Srinivas et al. (2009); Hernández-Lobato
et al. (2016). Similar to prior work Hernández-Lobato et al. (2016), we model the objective
functions f1, f2, · · · , fK using K independent GP modelsM1,M2, · · · ,MK with zero mean
and i.i.d. observation noise. Let D = {(~xi, ~yi)}t−1i=1 be the training data from past t−1
function evaluations, where ~xi ∈ X is an input and ~yi = {y1i , y2i , · · · , yKi } is the output
vector resulting from evaluating functions f1, f2, · · · , fK at ~xi. We learn surrogate models
M1,M2, · · · ,MK from D.

Output space entropy based acquisition function. Input space entropy based
methods like PESMO Hernández-Lobato et al. (2016) selects the next candidate input
~xt (for ease of notation, we drop the subscript in below discussion) by maximizing the
information gain about the optimal Pareto set X ∗. The acquisition function based on input
space entropy is given as follows:

α(~x) = I({~x, ~y},X ∗ | D) (1)

= H(X ∗ | D)− Ey[H(X ∗ | D ∪ {~x, ~y})] (2)

= H(~y | D,~x)− EX ∗ [H(~y | D,~x,X ∗)] (3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior
distribution P (X ∗ | D) over the optimal Pareto set X ∗ as given in Equations 2 and 3
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(resulting from symmetric property of information gain). This mathematical formulation
relies on a very expensive and high-dimensional (m · d dimensions) distribution P (X ∗ |
D), where m is size of the optimal Pareto set X ∗. Furthermore, optimizing the second
term in r.h.s poses significant challenges: a) requires a series of approximations Hernández-
Lobato et al. (2016) which can be potentially sub-optimal; and b) optimization, even after
approximations, is expensive c) performance is strongly dependent on the number of Monte-
Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition
function, we take an alternative route and propose to maximize the information gain about
the optimal Pareto front Y∗. This is equivalent to expected reduction in entropy over
the Pareto front Y∗, which relies on a computationally cheap and low-dimensional (m ·
K dimensions, which is significantly less than m · d as K � d in practice) distribution
P (Y∗ | D). Our acquisition function that maximizes the information gain between the next
candidate input for evaluation ~x and Pareto front Y∗ is given as:

The full derivation of our acquisition function can be found in Belakaria et al. (2019).
We get the final form of our acquisition function as shown below:

α(~x) ' 1

S

S∑
s=1

K∑
j=1

[
γjs(~x)φ(γjs(~x))

2Φ(γjs(~x))
− ln Φ(γjs(~x))

]
(4)

where γjs(x) =
yj∗s −µj(~x)
σj(~x)

, yj∗s = max{zj1, · · · z
j
m}, and φ and Φ are the p.d.f and c.d.f of a

standard normal distribution respectively. A complete description of the MESMO algorithm
is given in Algorithm 1. The blue colored steps correspond to computation of our output
space entropy based acquisition function via sampling.

Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no. of iterations
Tmax

1: Initialize Gaussian process modelsM1,M2, · · · ,MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select ~xt ← argmax~x∈X αt(~x), where αt(.) is computed as:
4: for each sample s ∈ 1, · · · , S:
5: Sample f̃i ∼Mi, ∀i ∈ {1, · · · ,K}
6: Y∗s ← Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)
7: Compute αt(.) based on the S samples of Y∗s as given in Equation 4
8: Evaluate ~xt: ~yt ← (f1(~xt), · · · , fK(~xt))
9: Aggregate data: D ← D ∪ {(~xt, ~yt)}
10: Update modelsM1,M2, · · · ,MK

11: t← t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4. Experiments and Results

In this section, we describe our experimental setup, present results of MESMO on diverse
real-world experiments, and compare MESMO with existing methods.
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4.1 Experimental Setup

Multi-objective BO algorithms. We compare MESMO with existing methods described
in the related work: ParEGO Knowles (2006), PESMO Hernández-Lobato et al. (2016),
SMSego Ponweiser et al. (2008), EHI Emmerich and Klinkenberg (2008), and SUR Picheny
(2015). We employ the code for these methods from the BO library Spearmint1. For meth-
ods requiring PHV computation, we employ the PyGMO library2. According to PyGMO
documentation, the algorithm from Nowak et al. (2014) is employed for PHV computation.
We did not include PAL Zuluaga et al. (2013) as it is known to have similar performance
as SMSego Hernández-Lobato et al. (2016) and works only for finite discrete input space.

Statistical models. We use a GP based statistical model with squared exponential (SE)
kernel in all our experiments. The hyper-parameters are estimated after every 5 function
evaluations. We initialize the GP models for all functions by sampling initial points at
random from a Sobol grid. This initialization procedure is same as the one in-built in the
Spearmint library.

Real-world benchmarks. We employed four real-world benchmarks with data available
at Zuluaga et al. (2013); Shah and Ghahramani (2016).

1) Hyper-parameter tuning of neural networks. In this benchmark, our goal is
to find a neural network with high accuracy and low prediction time. We optimize a dense
neural network over the MNIST dataset LeCun et al. (1998). Hyper-parameters include
the number of hidden layers, the number of neurons per layer, the dropout probability, the
learning rate, and the regularization weight penalties l1 and l2. We employ 10K instances
for validation and 50K instances for training. We train the network for 100 epochs for
evaluating each candidate hyper-parameter values on validation set. We apply a logarithm
function to error rates due to their very small values.

2) SW-LLVM compiler settings optimization. SW-LLVM is a data set with
1024 compiler settings Siegmund et al. (2012) determined by d=10 binary inputs. The goal
of this experiment is to find a setting of the LLVM compiler that optimizes the memory
footprint and performance on a given set of software programs. Evaluating these objectives
is very costly and testing all the compiler settings takes days.

3) SNW sorting network optimization. The data set SNW was first introduced
by Zuluaga et al. (2012). The goal is to optimize the area and throughput for the synthesis
of a field-programmable gate array (FPGA) platform. The input space consists of 206
different hardware design implementations of a sorting network. Each design is defined by
d = 4 input variables.

4) Network-on-chip (NOC) optimization. The design space of NoC dataset
Almer et al. (2011) consists of 259 implementations of a tree-based network-on-chip. Each
configuration is defined by d = 4 variables: width, complexity, FIFO, and multiplier. We
optimize energy and runtime of application-specific integrated circuits (ASICs) on the Core-
mark benchmark workload Almer et al. (2011).

In a recent work Belakaria et al. (2020b), MESMO is adapted to design and optimize
electrified aviation power systems guided by expensive simulations.

1. https://github.com/HIPS/Spearmint/tree/PESM
2. https://esa.github.io/pygmo/
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Figure 1: Results of different multi-objective BO algorithms including MESMO on real-
world benchmarks. The log of the hypervolume difference is shown with different number
of function evaluations. The mean and variance of 10 different runs are plotted. The title
of each figure refers to the name of real-world benchmark. (Figures better seen in color.)

Evaluation metric. We employ a common metric used in practice: The Pareto hypervol-
ume (PHV) Zitzler (1999).

4.2 Results and Discussion

We run all experiments 10 times. The mean and variance of the PHV metric across different
runs are reported as a function of the number of iterations.

MESMO vs. State-of-the-art. We evaluate the performance of MESMO and PESMO
with different number of Monte-Carlo samples for acquisition function optimization. Figure
1 shows the results of all multi-objective BO algorithms including MESMO for the four
real-world experiments on PHV . Additional results with We present synthetic benchmarks
and R2 metric can be found in Belakaria et al. (2019). We make the following empirical
observations: 1) MESMO consistently performs better than all baselines and also converges
much faster. For blackbox optimization problems with expensive function evaluations, faster
convergence has practical benefits as it allows the end-user or decision-maker to stop early.
2) Rate of convergence of MESMO slighly varies with different number of Monte-Carlo
samples. However, in all cases, MESMO performs better than baseline methods. 3) The
convergence rate of PESMO is dramatically affected by the number of Monte-Carlo samples:
100 samples lead to better results than 10 and 1. In contrast, MESMO maintains a better
performance consistently even with a single sample!. The results strongly demonstrate that
MESMO is much more robust to the number of Monte-Carlo samples than PESMO. 4)
Performance of ParEGO is very inconsistent. In some cases, it is comparable to MESMO,
but performs poorly on many other cases. This is expected due to random scalarization.

Comparison of acquisition function optimization time. We compare the runtime of
acquisition function optimization for different multi-objective BO algorithms. The results
and discussion of this comparison can be found in Belakaria et al. (2019). The acquisition
function optimization time of MESMO is significantly smaller than PESMO for the same
number of Monte-Carlo samples and comparable to ParEGO, which relies on scalarization
to reduce to acquisition function optimization in single-objective BO.
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